Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.
Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain; Aragón Institute of Engineering Research, Zaragoza, Spain.
Acta Biomater. 2019 Jul 1;92:265-276. doi: 10.1016/j.actbio.2019.05.023. Epub 2019 May 11.
The extracellular matrix (ECM) of the lung provides physical support and key mechanical signals to pulmonary cells. Although lung ECM is continuously subjected to different stretch levels, detailed mechanics of the ECM at the scale of the cell is poorly understood. Here, we developed a new polydimethylsiloxane (PDMS) chip to probe nonlinear mechanics of tissue samples with atomic force microscopy (AFM). Using this chip, we performed AFM measurements in decellularized rat lung slices at controlled stretch levels. The AFM revealed highly nonlinear ECM elasticity with the microscale stiffness increasing with tissue strain. To correlate micro- and macroscale ECM mechanics, we also assessed macromechanics of decellularized rat lung strips under uniaxial tensile testing. The lung strips exhibited exponential macromechanical behavior but with stiffness values one order of magnitude lower than at the microscale. To interpret the relationship between micro- and macromechanical properties, we carried out a finite element (FE) analysis which revealed that the stiffness of the alveolar cell microenvironment is regulated by the global strain of the lung scaffold. The FE modeling also indicates that the scale dependence of stiffness is mainly due to the porous architecture of the lung parenchyma. We conclude that changes in tissue strain during breathing result in marked changes in the ECM stiffness sensed by alveolar cells providing tissue-specific mechanical signals to the cells. STATEMENT OF SIGNIFICANCE: The micromechanical properties of the extracellular matrix (ECM) are a major determinant of cell behavior. The ECM is exposed to mechanical stretching in the lung and other organs during physiological function. Therefore, a thorough knowledge of the nonlinear micromechanical properties of the ECM at the length scale that cells probe is required to advance our understanding of cell-matrix interplay. We designed a novel PDMS chip to perform atomic force microscopy measurements of ECM micromechanics on decellularized rat lung slices at different macroscopic strain levels. For the first time, our results reveal that the microscale stiffness of lung ECM markedly increases with macroscopic tissue strain. Therefore, changes in tissue strain during breathing result in variations in ECM stiffness providing tissue-specific mechanical signals to lung cells.
肺的细胞外基质 (ECM) 为肺细胞提供物理支撑和关键机械信号。尽管肺 ECM 不断受到不同拉伸水平的影响,但细胞水平上 ECM 的详细力学特性仍知之甚少。在这里,我们开发了一种新的聚二甲基硅氧烷 (PDMS) 芯片,用于使用原子力显微镜 (AFM) 探测组织样本的非线性力学特性。使用该芯片,我们在受控拉伸水平下对脱细胞大鼠肺切片进行 AFM 测量。AFM 揭示了 ECM 弹性的高度非线性,随着组织应变的增加,微尺度的刚度也随之增加。为了将微观和宏观 ECM 力学相关联,我们还在单轴拉伸测试下评估了脱细胞大鼠肺条带的宏观力学性能。肺条带表现出指数型宏观力学行为,但刚度值比微观尺度低一个数量级。为了解释微观和宏观力学性能之间的关系,我们进行了有限元 (FE) 分析,结果表明肺泡细胞微环境的刚度由肺支架的整体应变调节。FE 建模还表明,刚度的尺度依赖性主要是由于肺实质的多孔结构。我们得出的结论是,呼吸过程中组织应变的变化导致肺泡细胞感知到的 ECM 刚度发生显著变化,从而向细胞提供组织特异性的机械信号。
细胞外基质 (ECM) 的微观力学特性是细胞行为的主要决定因素。在生理功能期间,ECM 会在肺部和其他器官中受到机械拉伸。因此,为了深入了解细胞探测的 ECM 微观力学的非线性微观力学特性,需要对细胞基质相互作用有更深入的了解。我们设计了一种新颖的 PDMS 芯片,用于在不同的宏观应变水平下对脱细胞大鼠肺切片进行 ECM 微观力学的原子力显微镜测量。我们的结果首次揭示,肺 ECM 的微尺度刚度随宏观组织应变显著增加。因此,呼吸过程中组织应变的变化导致 ECM 刚度的变化,从而向肺细胞提供组织特异性的机械信号。