Lan Hsin, Tan Xing Haw Marvin, Le Minh-Tam Tran, Chien Hao-Yu, Zheng Ruoda, Rowat Amy C, Teitell Michael A, Chiou Pei-Yu
Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA.
Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA.
Small. 2025 Jan;21(1):e2406389. doi: 10.1002/smll.202406389. Epub 2024 Nov 30.
A new device termed "Optomagnetic Micromirror Arrays" (OMA) is demonstrated capable of mapping the stiffness distribution of biomimetic materials across a 5.1 mm × 7.2 mm field of view with cellular resolution. The OMA device comprises an array of 50 000 magnetic micromirrors with optical grating structures embedded beneath an elastic PDMS film, with biomimetic materials affixed on top. Illumination of a broadband white light beam onto these micromirrors results in the reflection of microscale rainbow light rays on each micromirror. When a magnetic field is applied, it causes each micromirror to tilt differently depending on the local stiffness of the biomimetic materials. Through imaging these micromirrors with low N.A. optics, a specific narrow band of reflection light rays from each micromirror is captured. Changing a micromirror's tilt angle also alters the color spectrum it reflects back to the imaging system and the color of the micromirror image it represents. As a result, OMA can infer the local stiffness of the biomimetic materials through the color change detected on each micromirror. OMA offers the potential for high-throughput stiffness mapping at the tissue-level while maintaining spatial resolution at the cellular level.
一种名为“光磁微镜阵列”(OMA)的新设备被证明能够在5.1毫米×7.2毫米的视场内以细胞分辨率绘制仿生材料的刚度分布。OMA设备包括50000个带有光栅结构的磁性微镜阵列,这些光栅结构嵌入在弹性聚二甲基硅氧烷(PDMS)薄膜下方,仿生材料固定在顶部。将宽带白光束照射到这些微镜上会导致每个微镜上反射出微尺度的彩虹光线。当施加磁场时,每个微镜会根据仿生材料的局部刚度以不同方式倾斜。通过使用低数值孔径光学器件对这些微镜进行成像,可以捕获来自每个微镜的特定窄带反射光线。改变微镜的倾斜角度也会改变它反射回成像系统的光谱以及它所代表的微镜图像的颜色。因此,OMA可以通过在每个微镜上检测到的颜色变化推断仿生材料的局部刚度。OMA在保持细胞水平空间分辨率的同时,为组织水平的高通量刚度映射提供了潜力。