Suppr超能文献

用于神经假体应用的现成DSP处理器上的实时神经信号解码

Real-Time Neural Signals Decoding onto Off-the-Shelf DSP Processors for Neuroprosthetic Applications.

作者信息

Pani Danilo, Barabino Gianluca, Citi Luca, Meloni Paolo, Raspopovic Stanisa, Micera Silvestro, Raffo Luigi

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2016 Sep;24(9):993-1002. doi: 10.1109/TNSRE.2016.2527696. Epub 2016 May 2.

Abstract

The control of upper limb neuroprostheses through the peripheral nervous system (PNS) can allow restoring motor functions in amputees. At present, the important aspect of the real-time implementation of neural decoding algorithms on embedded systems has been often overlooked, notwithstanding the impact that limited hardware resources have on the efficiency/effectiveness of any given algorithm. Present study is addressing the optimization of a template matching based algorithm for PNS signals decoding that is a milestone for its real-time, full implementation onto a floating-point digital signal processor (DSP). The proposed optimized real-time algorithm achieves up to 96% of correct classification on real PNS signals acquired through LIFE electrodes on animals, and can correctly sort spikes of a synthetic cortical dataset with sufficiently uncorrelated spike morphologies (93% average correct classification) comparably to the results obtained with top spike sorter (94% on average on the same dataset). The power consumption enables more than 24 h processing at the maximum load, and latency model has been derived to enable a fair performance assessment. The final embodiment demonstrates the real-time performance onto a low-power off-the-shelf DSP, opening to experiments exploiting the efferent signals to control a motor neuroprosthesis.

摘要

通过外周神经系统(PNS)控制上肢神经假体能够使截肢者恢复运动功能。目前,尽管有限的硬件资源会对任何给定算法的效率/有效性产生影响,但在嵌入式系统上实时实现神经解码算法这一重要方面却常常被忽视。本研究致力于优化一种基于模板匹配的算法,用于PNS信号解码,这对于在浮点数字信号处理器(DSP)上实时、全面实现该算法而言是一个里程碑。所提出的优化实时算法在通过动物身上的LIFE电极采集的真实PNS信号上实现了高达96%的正确分类,并且能够与顶级尖峰分类器在同一数据集上获得的结果(平均94%)相当,正确分类具有足够不相关尖峰形态的合成皮质数据集的尖峰(平均正确分类率为93%)。其功耗能够在最大负载下实现超过24小时的处理,并且已经推导了延迟模型以进行公平的性能评估。最终的实施方案展示了在低功耗现成DSP上的实时性能,为利用传出信号控制运动神经假体的实验开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验