Suppr超能文献

运动神经元的非侵入式解码:一种基于具有聚类起始点的卷积核补偿的引导源分离方法。

Non-invasive Decoding of the Motoneurons: A Guided Source Separation Method Based on Convolution Kernel Compensation With Clustered Initial Points.

作者信息

Mohebian Mohammad Reza, Marateb Hamid Reza, Karimimehr Saeed, Mañanas Miquel Angel, Kranjec Jernej, Holobar Ales

机构信息

The Biomedical Engineering Department, Engineering Faculty, University of Isfahan, Isfahan, Iran.

Brain Engineering Research Center, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

出版信息

Front Comput Neurosci. 2019 Apr 2;13:14. doi: 10.3389/fncom.2019.00014. eCollection 2019.

Abstract

Despite the progress in understanding of neural codes, the studies of the cortico-muscular coupling still largely rely on interferential electromyographic (EMG) signal or its rectification for the assessment of motor neuron pool behavior. This assessment is non-trivial and should be used with precaution. Direct analysis of neural codes by decomposing the EMG, also known as neural decoding, is an alternative to EMG amplitude estimation. In this study, we propose a fully-deterministic hybrid surface EMG (sEMG) decomposition approach that combines the advantages of both template-based and Blind Source Separation (BSS) decomposition approaches, a.k.a. guided source separation (GSS), to identify motor unit (MU) firing patterns. We use the single-pass density-based clustering algorithm to identify possible cluster representatives in different sEMG channels. These cluster representatives are then used as initial points of modified gradient Convolution Kernel Compensation (gCKC) algorithm. Afterwards, we use the Kalman filter to reduce the noise impact and increase convergence rate of MU filter identification by gCKC. Moreover, we designed an adaptive soft-thresholding method to identify MU firing times out of estimated MU spike trains. We tested the proposed algorithm on a set of synthetic sEMG signals with known MU firing patterns. A grid of 9 × 10 monopolar surface electrodes with 5-mm inter-electrode distances in both directions was simulated. Muscle excitation was set to 10, 30, and 50%. Colored Gaussian zero-mean noise with the signal-to-noise ratio (SNR) of 10, 20, and 30 dB, respectively, was added to 16 s long sEMG signals that were sampled at 4,096 Hz. Overall, 45 simulated signals were analyzed. Our decomposition approach was compared with gCKC algorithm. Overall, in our algorithm, the average numbers of identified MUs and Rate-of-Agreement (RoA) were 16.41 ± 4.18 MUs and 84.00 ± 0.06%, respectively, whereas the gCKC identified 12.10 ± 2.32 MUs with the average RoA of 90.78 ± 0.08%. Therefore, the proposed GSS method identified more MUs than the gCKC, with comparable performance. Its performance was dependent on the signal quality but not the signal complexity at different force levels. The proposed algorithm is a promising new offline tool in clinical neurophysiology.

摘要

尽管在神经编码的理解方面取得了进展,但皮质 - 肌肉耦合的研究在很大程度上仍依赖于干扰肌电图(EMG)信号或其整流来评估运动神经元池的行为。这种评估并非易事,应谨慎使用。通过分解EMG直接分析神经编码,也称为神经解码,是EMG幅度估计的一种替代方法。在本研究中,我们提出了一种完全确定性的混合表面肌电图(sEMG)分解方法,该方法结合了基于模板和盲源分离(BSS)分解方法(即引导源分离(GSS))的优点,以识别运动单位(MU)的放电模式。我们使用单遍基于密度的聚类算法来识别不同sEMG通道中可能的聚类代表。然后将这些聚类代表用作改进的梯度卷积核补偿(gCKC)算法的初始点。之后,我们使用卡尔曼滤波器来减少噪声影响并提高gCKC识别MU滤波器的收敛速度。此外,我们设计了一种自适应软阈值方法,以从估计的MU尖峰序列中识别MU放电时间。我们在一组具有已知MU放电模式的合成sEMG信号上测试了所提出的算法。模拟了一个9×10的单极表面电极网格,两个方向上的电极间距均为5毫米。肌肉兴奋设置为10%、30%和50%。分别将信噪比(SNR)为10 dB、20 dB和30 dB的有色高斯零均值噪声添加到以4,096 Hz采样的16秒长的sEMG信号中。总共分析了45个模拟信号。我们的分解方法与gCKC算法进行了比较。总体而言,在我们的算法中,识别出的MU平均数量和一致率(RoA)分别为16.41±4.18个MU和84.00±0.06%,而gCKC识别出12.10±2.32个MU,平均RoA为90.78±0.08%。因此,所提出的GSS方法比gCKC识别出更多的MU,且性能相当。其性能取决于信号质量,而不是不同力水平下的信号复杂性。所提出的算法是临床神经生理学中一种有前途的新型离线工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6ca/6455215/9bbaa27bfade/fncom-13-00014-g0001.jpg

相似文献

2
A fast gradient convolution kernel compensation method for surface electromyogram decomposition.
J Electromyogr Kinesiol. 2024 Jun;76:102869. doi: 10.1016/j.jelekin.2024.102869. Epub 2024 Mar 4.
3
Deep Learning for Robust Decomposition of High-Density Surface EMG Signals.
IEEE Trans Biomed Eng. 2021 Feb;68(2):526-534. doi: 10.1109/TBME.2020.3006508. Epub 2021 Jan 20.
4
A Bi-GRU-attention neural network to identify motor units from high-density surface electromyographic signals in real time.
Front Neurosci. 2024 Mar 13;18:1306054. doi: 10.3389/fnins.2024.1306054. eCollection 2024.
5
High-Density Surface EMG Decomposition by Combining Iterative Convolution Kernel Compensation With an Energy-Specific Peel-off Strategy.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:3641-3651. doi: 10.1109/TNSRE.2023.3309546. Epub 2023 Sep 18.
6
Segment-Wise Decomposition of Surface Electromyography to Identify Discharges Across Motor Neuron Populations.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:2012-2021. doi: 10.1109/TNSRE.2022.3192272. Epub 2022 Jul 26.
7
Adaptive Real-Time Identification of Motor Unit Discharges From Non-Stationary High-Density Surface Electromyographic Signals.
IEEE Trans Biomed Eng. 2020 Dec;67(12):3501-3509. doi: 10.1109/TBME.2020.2989311. Epub 2020 Nov 19.
8
Adaptive Real-Time Decomposition of Electromyogram During Sustained Muscle Activation: A Simulation Study.
IEEE Trans Biomed Eng. 2022 Feb;69(2):645-653. doi: 10.1109/TBME.2021.3102947. Epub 2022 Jan 20.
9
Estimating motor unit discharge patterns from high-density surface electromyogram.
Clin Neurophysiol. 2009 Mar;120(3):551-62. doi: 10.1016/j.clinph.2008.10.160. Epub 2009 Feb 8.
10
Online Decomposition of Surface Electromyogram Into Individual Motor Unit Activities Using Progressive FastICA Peel-Off.
IEEE Trans Biomed Eng. 2024 Jan;71(1):160-170. doi: 10.1109/TBME.2023.3294016. Epub 2023 Dec 22.

引用本文的文献

本文引用的文献

1
Comparison of Convolutive Kernel Compensation and Non-Negative Matrix Factorization of Surface Electromyograms.
IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):1935-1944. doi: 10.1109/TNSRE.2018.2869426. Epub 2018 Sep 27.
2
A Novel Validation Approach for High-Density Surface EMG Decomposition in Motor Neuron Disease.
IEEE Trans Neural Syst Rehabil Eng. 2018 Jun;26(6):1161-1168. doi: 10.1109/TNSRE.2018.2836859.
3
Automatic Implementation of Progressive FastICA Peel-Off for High Density Surface EMG Decomposition.
IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):144-152. doi: 10.1109/TNSRE.2017.2759664. Epub 2017 Oct 4.
4
Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking.
Neuroimage. 2017 Oct 1;159:403-416. doi: 10.1016/j.neuroimage.2017.07.013. Epub 2017 Aug 4.
5
A Real-Time Method for Decoding the Neural Drive to Muscles Using Single-Channel Intra-Muscular EMG Recordings.
Int J Neural Syst. 2017 Sep;27(6):1750025. doi: 10.1142/S0129065717500253. Epub 2017 Mar 20.
7
Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.
Front Neurosci. 2016 Nov 3;10:474. doi: 10.3389/fnins.2016.00474. eCollection 2016.
9
Real-Time Neural Signals Decoding onto Off-the-Shelf DSP Processors for Neuroprosthetic Applications.
IEEE Trans Neural Syst Rehabil Eng. 2016 Sep;24(9):993-1002. doi: 10.1109/TNSRE.2016.2527696. Epub 2016 May 2.
10
Age-related changes in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction.
Age (Dordr). 2016 Jun;38(3):48. doi: 10.1007/s11357-016-9915-0. Epub 2016 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验