Bayer Julia, Kuenne Carsten, Preussner Jens, Looso Mario
Group of Bioinformatics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, D-61231, Bad Nauheim, Germany.
BMC Bioinformatics. 2016 May 11;17(1):210. doi: 10.1186/s12859-016-1070-1.
BACKGROUND: MicroRNAs (miRNAs) impact various biological processes within animals and plants. They complementarily bind target mRNAs, effecting a post-transcriptional negative regulation on mRNA level. The investigation of miRNA target interactions (MTIs) by high throughput screenings is challenging, as frequently used in silico target prediction tools are prone to emit false positives. This issue is aggravated for niche model organisms, where validated miRNAs and MTIs both have to be transferred from well described model organisms. Even though DBs exist that contain experimentally validated MTIs, they are limited in their search options and they utilize different miRNA and target identifiers. RESULTS: The implemented pipeline LimiTT integrates four existing DBs containing experimentally validated MTIs. In contrast to other cumulative databases (DBs), LimiTT includes MTI data of 26 species. Additionally, the pipeline enables the identification and enrichment analysis of MTIs with and without species specificity based on dynamic quality criteria. Multiple tabular and graphical outputs are generated to permit the detailed assessment of results. CONCLUSION: Our freely available web-based pipeline LimiTT ( https://bioinformatics.mpi-bn.mpg.de/ ) is optimized to determine MTIs with and without species specification. It links miRNAs and/or putative targets with high granularity. The integrated mapping to homologous target identifiers enables the identification of MTIs not only for standard models, but for niche model organisms as well.
背景:微小RNA(miRNA)影响动植物体内的各种生物学过程。它们与靶标mRNA互补结合,在mRNA水平上进行转录后负调控。通过高通量筛选研究miRNA靶标相互作用(MTI)具有挑战性,因为常用的计算机靶标预测工具容易产生假阳性。对于特定的模式生物,这个问题更加严重,因为经过验证的miRNA和MTI都必须从描述详尽的模式生物中转移过来。尽管存在包含实验验证的MTI的数据库,但它们的搜索选项有限,并且使用不同的miRNA和靶标标识符。 结果:所实施的流程LimiTT整合了四个包含实验验证的MTI 的现有数据库。与其他累积数据库不同,LimiTT包含26种物种的MTI数据。此外,该流程能够根据动态质量标准对具有和不具有物种特异性的MTI进行识别和富集分析。生成多个表格和图形输出以允许对结果进行详细评估。 结论:我们免费提供的基于网络的流程LimiTT(https://bioinformatics.mpi-bn.mpg.de/ )经过优化,可确定具有和不具有物种特异性的MTI。它以高粒度链接miRNA和/或推定的靶标。与同源靶标标识符的整合映射不仅能够识别标准模式生物的MTI,也能识别特定模式生物的MTI。
BMC Bioinformatics. 2016-5-11
Nucleic Acids Res. 2020-1-8
Nucleic Acids Res. 2011-1
Nucleic Acids Res. 2022-1-7
Nucleic Acids Res. 2016-1-4
Nucleic Acids Res. 2018-1-4
Bioinformatics. 2018-5-1
Nat Methods. 2015-8
Int J Hypertens. 2015
Mol Biol Evol. 2015-8
Methods Mol Biol. 2015
Bioinformatics. 2014-12-1