Suppr超能文献

DPMIND:基于降解组的植物 miRNA 靶标相互作用和网络数据库。

DPMIND: degradome-based plant miRNA-target interaction and network database.

机构信息

State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture.

College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.

出版信息

Bioinformatics. 2018 May 1;34(9):1618-1620. doi: 10.1093/bioinformatics/btx824.

Abstract

MOTIVATION

MicroRNAs (miRNAs) play essential roles in plant growth, development and stress responses through post-transcriptionally regulating the expression levels of their target mRNAs. Although some tools and databases were developed for predicting the relationships between miRNAs and their targets (miR-Tar), most of them were dependent on computational methods without experimental validations. With the development of degradome sequencing techniques, researchers can identify potential interactions based on degradome sequencing data. The validations with specific degradome data are useful to identify the miR-Tar interactions (MTIs) occurring in/under some specific tissues or treatments. Degradome-based plant miRNA-target interaction and network database (DPMIND) collected almost all available plant degradome data and built a retrieval and analysis platform of miRNA-target interactions and miRNA regulatory networks (MRNs).

RESULTS

DPMIND contains the recently updated 3794 miRNAs and 28 666 verified MTIs with 69 degradomes from 10 plant species. Not only the verified MTIs but also the degradome-based MRNs can be retrieved from DPMIND. Users can search for the verified MTIs and build degradome-based MRNs for the specific miRNAs or targets. DPMIND can build the MRNs based on all degradomes or specific degradomes, which helps to identify all possible connections among specific miR-Tar and compare the miRNA-mediated networks among various tissues or treatments. It can also build the networks mediated by all known miRNAs based on specific degradomes. Furthermore, DPMIND can be used to study the conservation and specificity of MTIs and sub-networks across different plant tissues or species.

AVAILABILITY AND IMPLEMENTATION

http://202.195.246.60/DPMIND/.

CONTACT

huangji@njau.edu.cn.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

MicroRNAs(miRNAs)通过转录后调控其靶 mRNA 的表达水平,在植物生长、发育和应激反应中发挥重要作用。尽管已经开发了一些用于预测 miRNAs 和其靶标(miR-Tar)之间关系的工具和数据库,但大多数都依赖于没有实验验证的计算方法。随着降解组测序技术的发展,研究人员可以根据降解组测序数据来识别潜在的相互作用。使用特定降解组数据进行验证有助于识别在/下特定组织或处理中发生的 miR-Tar 相互作用(MTIs)。基于降解组的植物 miRNA-靶标相互作用和网络数据库(DPMIND)收集了几乎所有可用的植物降解组数据,并构建了 miRNA-靶标相互作用和 miRNA 调控网络(MRNs)的检索和分析平台。

结果

DPMIND 包含最近更新的 3794 个 miRNA 和 28666 个经过验证的 MTIs,来自 10 个植物物种的 69 个降解组。不仅可以从 DPMIND 中检索到经过验证的 MTIs,还可以检索基于降解组的 MRNs。用户可以搜索特定的 miRNAs 或靶标,查找经过验证的 MTIs 并构建基于降解组的 MRNs。DPMIND 可以基于所有降解组或特定降解组构建 MRNs,这有助于识别特定 miR-Tar 之间的所有可能连接,并比较不同组织或处理中 miRNA 介导的网络。它还可以基于特定降解组构建所有已知 miRNAs 介导的网络。此外,DPMIND 可用于研究不同植物组织或物种中 MTIs 和子网络的保守性和特异性。

可用性和实现

http://202.195.246.60/DPMIND/。

联系人

huangji@njau.edu.cn

补充信息

补充数据可在 Bioinformatics 在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验