文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用整合方法在拟南芥中进行 miRNA 靶标相互作用的全基因组搜索。

Genome-wide search for miRNA-target interactions in Arabidopsis thaliana with an integrated approach.

机构信息

Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China.

出版信息

BMC Genomics. 2012 Jun 11;13 Suppl 3(Suppl 3):S3. doi: 10.1186/1471-2164-13-S3-S3.


DOI:10.1186/1471-2164-13-S3-S3
PMID:22759612
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3394422/
Abstract

BACKGROUND: MiRNA are about 22nt long small noncoding RNAs that post transcriptionally regulate gene expression in animals, plants and protozoa. Confident identification of MiRNA-Target Interactions (MTI) is vital to understand their function. Currently, several integrated computational programs and databases are available for animal miRNAs, the mechanisms of which are significantly different from plant miRNAs. METHODS: Here we present an integrated MTI prediction and analysis toolkit (imiRTP) for Arabidopsis thaliana. It features two important functions: (i) combination of several effective plant miRNA target prediction methods provides a sufficiently large MTI candidate set, and (ii) different filters allow for an efficient selection of potential targets. The modularity of imiRTP enables the prediction of high quality targets on genome-wide scale. Moreover, predicted MTIs can be presented in various ways, which allows for browsing through the putative target sites as well as conducting simple and advanced analyses. RESULTS: Results show that imiRTP could always find high quality candidates compared with single method by choosing appropriate filter and parameter. And we also reveal that a portion of plant miRNA could bind target genes out of coding region. Based on our results, imiRTP could facilitate the further study of Arabidopsis miRNAs in real use. All materials of imiRTP are freely available under a GNU license at (http://admis.fudan.edu.cn/projects/imiRTP.htm).

摘要

背景:miRNA 是约 22nt 长的小非编码 RNA,在动物、植物和原生动物中通过转录后调控基因表达。准确识别 miRNA-靶标相互作用(MTI)对于理解其功能至关重要。目前,已有几个用于动物 miRNA 的综合计算程序和数据库,其机制与植物 miRNA 有显著差异。

方法:本文为拟南芥(Arabidopsis thaliana)呈现了一个综合的 MTI 预测和分析工具包(imiRTP)。它具有两个重要功能:(i)结合几种有效的植物 miRNA 靶标预测方法提供了一个足够大的 MTI 候选集,(ii)不同的筛选器允许有效选择潜在的靶标。imiRTP 的模块化可在全基因组范围内预测高质量的靶标。此外,预测的 MTIs 可以以多种方式呈现,允许浏览假定的靶标位点,并进行简单和高级的分析。

结果:结果表明,通过选择适当的筛选器和参数,imiRTP 总是可以比单一方法找到高质量的候选者。我们还揭示了一部分植物 miRNA 可以结合编码区外的靶基因。基于我们的结果,imiRTP 可以在实际应用中促进对拟南芥 miRNA 的进一步研究。imiRTP 的所有材料都可以在 GNU 许可证下免费获得(http://admis.fudan.edu.cn/projects/imiRTP.htm)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/d79cfc6a1c66/1471-2164-13-S3-S3-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/5d16ae07fd85/1471-2164-13-S3-S3-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/0ccc14827d36/1471-2164-13-S3-S3-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/1dffa5490df9/1471-2164-13-S3-S3-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/9fa2886886b8/1471-2164-13-S3-S3-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/d79cfc6a1c66/1471-2164-13-S3-S3-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/5d16ae07fd85/1471-2164-13-S3-S3-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/0ccc14827d36/1471-2164-13-S3-S3-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/1dffa5490df9/1471-2164-13-S3-S3-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/9fa2886886b8/1471-2164-13-S3-S3-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cb/3394422/d79cfc6a1c66/1471-2164-13-S3-S3-5.jpg

相似文献

[1]
Genome-wide search for miRNA-target interactions in Arabidopsis thaliana with an integrated approach.

BMC Genomics. 2012-6-11

[2]
Computational prediction of miRNAs in Arabidopsis thaliana.

Genome Res. 2005-1

[3]
Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets.

Genome Biol. 2004

[4]
Protocols for miRNA Target Prediction in Plants.

Methods Mol Biol. 2019

[5]
Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing.

BMC Plant Biol. 2012-11-19

[6]
Computational evidence for hundreds of non-conserved plant microRNAs.

BMC Genomics. 2005-9-13

[7]
miRFANs: an integrated database for Arabidopsis thaliana microRNA function annotations.

BMC Plant Biol. 2012-5-14

[8]
Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana.

RNA Biol. 2014

[9]
PAREameters: a tool for computational inference of plant miRNA-mRNA targeting rules using small RNA and degradome sequencing data.

Nucleic Acids Res. 2020-3-18

[10]
An expression atlas of miRNAs in Arabidopsis thaliana.

Sci China Life Sci. 2017-11-29

引用本文的文献

[1]
Identification and characterization of Eco-miR 169-EcNF-YA13 gene regulatory network reveal their role in conferring tolerance to dehydration and salinity stress in finger millet.

Sci Rep. 2025-4-10

[2]
A Multi-Level Iterative Bi-Clustering Method for Discovering miRNA Co-regulation Network of Abiotic Stress Tolerance in Soybeans.

Front Plant Sci. 2022-4-7

[3]
Structural and Functional Analyses of Hub MicroRNAs in An Integrated Gene Regulatory Network of Arabidopsis.

Genomics Proteomics Bioinformatics. 2022-8

[4]
Global mRNA and microRNA expression dynamics in response to anthracnose infection in sorghum.

BMC Genomics. 2020-11-3

[5]
Genome wide in-silico miRNA and target network prediction from stress responsive Horsegram (Macrotyloma uniflorum) accessions.

Sci Rep. 2020-10-14

[6]
miRNAs involved in transcriptome remodeling during pollen development and heat stress response in Solanum lycopersicum.

Sci Rep. 2020-7-1

[7]
PAREameters: a tool for computational inference of plant miRNA-mRNA targeting rules using small RNA and degradome sequencing data.

Nucleic Acids Res. 2020-3-18

[8]
(dehydration-responsive element-binding protein 2) type transcription factor in sorghum (): genome-wide identification, characterization and expression profiles under cadmium and salt stresses.

3 Biotech. 2018-10

[9]
PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules.

Nucleic Acids Res. 2018-9-28

[10]
Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis.

Plant Cell. 2017-7-13

本文引用的文献

[1]
Assessing the utility of thermodynamic features for microRNA target prediction under relaxed seed and no conservation requirements.

PLoS One. 2011-6-6

[2]
psRNATarget: a plant small RNA target analysis server.

Nucleic Acids Res. 2011-5-27

[3]
miRFam: an effective automatic miRNA classification method based on n-grams and a multiclass SVM.

BMC Bioinformatics. 2011-5-28

[4]
Fast accessibility-based prediction of RNA-RNA interactions.

Bioinformatics. 2011-5-18

[5]
A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins.

Nat Methods. 2011-5-15

[6]
A detailed investigation of accessibilities around target sites of siRNAs and miRNAs.

Bioinformatics. 2011-4-29

[7]
The sufficient minimal set of miRNA seed types.

Bioinformatics. 2011-3-26

[8]
MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features.

BMC Bioinformatics. 2010-12-14

[9]
RepTar: a database of predicted cellular targets of host and viral miRNAs.

Nucleic Acids Res. 2011-1

[10]
RNA editing of nuclear transcripts in Arabidopsis thaliana.

BMC Genomics. 2010-12-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索