Suppr超能文献

与铜/自由基醇氧化催化相关的单体铜(II)醇盐配合物的合成、自由基反应性和热化学

Synthesis, Radical Reactivity, and Thermochemistry of Monomeric Cu(II) Alkoxide Complexes Relevant to Cu/Radical Alcohol Oxidation Catalysis.

作者信息

Porter Thomas R, Capitao Dany, Kaminsky Werner, Qian Zhaoshen, Mayer James M

机构信息

Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195, United States.

出版信息

Inorg Chem. 2016 Jun 6;55(11):5467-75. doi: 10.1021/acs.inorgchem.6b00491. Epub 2016 May 12.

Abstract

Two new monomeric Cu(II) alkoxide complexes were prepared and fully characterized as models for intermediates in copper/radical mediated alcohol oxidation catalysis: Tp(tBuR)Cu(II)OCH2CF3 with Tp(tBu) = hydro-tris(3-tert-butyl-pyrazol-1-yl)borate 1 or Tp(tBuMe) = hydro-tris(3-tert-butyl-5-methyl-pyrazol-1-yl)borate 2. These complexes were made as models for potential intermediates in enzymatic and synthetic catalytic cycles for alcohol oxidation. However, the alkoxide ligands are not readily oxidized by loss of H; instead, these complexes were found to be hydrogen atom acceptors. They oxidize the hydroxylamine TEMPOH, 2,4,6-tri-t-butylphenol, and 1,4-cyclohexadiene to the nitroxyl radical, phenoxyl radical, and benzene, with formation of HOCH2CF3 (TFE) and the Cu(I) complexes Tp(tBuR)Cu(I)-MeCN in dichloromethane/1% MeCN or 1/2 [Tp(tBuR)Cu(I)]2 in toluene. On the basis of thermodynamics and kinetics arguments, these reactions likely proceed through concerted proton-electron transfer mechanisms. Thermochemical analyses give lower limits for the "effective bond dissociation free energies (BDFE)" of the O-H bonds in 1/2[Tp(tBuR)Cu(I)]2 + TFE and upper limits for the free energies associated with alkoxide oxidations via hydrogen atom transfer (effective alkoxide α-C-H BDFEs). These values are summations of the free energies of multiple chemical steps, which include the energetically favorable formation of 1/2[Tp(tBuR)Cu(I)]2. The effective alkoxide α-C-H bonds are very weak, BDFE ≤ 38 ± 4 kcal mol(-1) for 1 and ≤44 ± 5 kcal mol(-1) for 2 (gas-phase estimates), because C-H homolysis is thermodynamically coupled to one electron transfer to Cu(II) as well as the favorable formation of the 1/2[Tp(tBuR)Cu(I)]2 dimer. Treating 1 with the H atom acceptor (t)Bu3ArO(•) did not result in the expected alkoxide oxidation to an aldehyde, but rather net 2,2,2-trifluoroethoxyl radical transfer occurred to generate an unusual 2-substituted dienone-ether product. Treating 2 with (t)Bu3ArO(•) gives no reaction, despite evidence that overall ligand oxidation and formation of 1/2[Tp(tBuMe)Cu(I)]2 is significantly exoergic. The origin of this lack of reactivity may be due to insufficient weakening of the alcohol α-C-H bond upon complexation to copper.

摘要

制备了两种新型单体铜(II)醇盐配合物,并对其进行了全面表征,作为铜/自由基介导的醇氧化催化中间体的模型:Tp(tBuR)Cu(II)OCH2CF3,其中Tp(tBu) = 氢化三(3-叔丁基-吡唑-1-基)硼酸酯1或Tp(tBuMe) = 氢化三(3-叔丁基-5-甲基-吡唑-1-基)硼酸酯2。这些配合物被制备为醇氧化的酶促和合成催化循环中潜在中间体的模型。然而,醇盐配体不容易通过氢的损失而被氧化;相反,发现这些配合物是氢原子受体。它们将羟胺TEMPOH、2,4,6-三叔丁基苯酚和1,4-环己二烯氧化为硝酰自由基、苯氧基自由基和苯,在二氯甲烷/1%乙腈中形成HOCH2CF3(TFE)和铜(I)配合物Tp(tBuR)Cu(I)-MeCN,或在甲苯中形成1/2 [Tp(tBuR)Cu(I)]2。基于热力学和动力学的观点,这些反应可能通过协同质子-电子转移机制进行。热化学分析给出了1/2[Tp(tBuR)Cu(I)]2 + TFE中O-H键的“有效键解离自由能(BDFE)”的下限,以及通过氢原子转移进行醇盐氧化相关自由能的上限(有效醇盐α-C-H BDFE)。这些值是多个化学步骤自由能的总和,其中包括能量上有利的1/2[Tp(tBuR)Cu(I)]2的形成。有效醇盐α-C-H键非常弱,对于1,气相估计BDFE≤38±4 kcal mol(-1),对于2,BDFE≤44±5 kcal mol(-1),因为C-H均裂在热力学上与向铜(II)的单电子转移以及1/2[Tp(tBuR)Cu(I)]2二聚体的有利形成相耦合。用氢原子受体(t)Bu3ArO(•)处理1并没有导致预期的醇盐氧化为醛,而是发生了净的2,2,2-三氟乙氧基自由基转移,生成了一种不寻常的2-取代二烯酮-醚产物。用(t)Bu3ArO(•)处理2没有反应,尽管有证据表明整体配体氧化和1/2[Tp(tBuMe)Cu(I)]2的形成是显著放热的。这种缺乏反应性的原因可能是由于与铜络合时醇α-C-H键的弱化不足。

相似文献

3
Synthetic Applications of Proton-Coupled Electron Transfer.
Acc Chem Res. 2016 Aug 16;49(8):1546-56. doi: 10.1021/acs.accounts.6b00272. Epub 2016 Jul 29.
4
Electronic Structure of a Cu(II)-Alkoxide Complex Modeling Intermediates in Copper-Catalyzed Alcohol Oxidations.
J Am Chem Soc. 2016 Mar 30;138(12):4132-45. doi: 10.1021/jacs.5b13088. Epub 2016 Mar 18.
5
A Continuum of Proton-Coupled Electron Transfer Reactivity.
Acc Chem Res. 2018 Oct 16;51(10):2391-2399. doi: 10.1021/acs.accounts.8b00319. Epub 2018 Sep 20.
6
[CuO](+) and [CuOH](2+) complexes: intermediates in oxidation catalysis?
Acc Chem Res. 2015 Jul 21;48(7):2126-31. doi: 10.1021/acs.accounts.5b00169. Epub 2015 Jun 15.
8
Saturation kinetics in phenolic O-H bond oxidation by a mononuclear Mn(III)-OH complex derived from dioxygen.
Inorg Chem. 2014 Jul 21;53(14):7622-34. doi: 10.1021/ic500943k. Epub 2014 Jul 10.

引用本文的文献

1
Involvement of a Formally Copper(III) Nitrite Complex in Proton-Coupled Electron Transfer and Nitration of Phenols.
Inorg Chem. 2022 Feb 7;61(5):2662-2668. doi: 10.1021/acs.inorgchem.1c03790. Epub 2022 Jan 25.
2
Structural Characterization of the [CuOR] Core.
J Am Chem Soc. 2021 Mar 10;143(9):3295-3299. doi: 10.1021/jacs.0c13470. Epub 2021 Feb 23.
4
Electronic Structure of a Cu(II)-Alkoxide Complex Modeling Intermediates in Copper-Catalyzed Alcohol Oxidations.
J Am Chem Soc. 2016 Mar 30;138(12):4132-45. doi: 10.1021/jacs.5b13088. Epub 2016 Mar 18.

本文引用的文献

1
Electronic Structure of a Cu(II)-Alkoxide Complex Modeling Intermediates in Copper-Catalyzed Alcohol Oxidations.
J Am Chem Soc. 2016 Mar 30;138(12):4132-45. doi: 10.1021/jacs.5b13088. Epub 2016 Mar 18.
2
O-H hydrogen bonding promotes H-atom transfer from α C-H bonds for C-alkylation of alcohols.
Science. 2015 Sep 25;349(6255):1532-6. doi: 10.1126/science.aac8555. Epub 2015 Aug 27.
3
Preparation, structural characterization, and thermochemistry of an isolable 4-arylphenoxyl radical.
J Org Chem. 2014 Oct 17;79(20):9451-4. doi: 10.1021/jo501531a. Epub 2014 Sep 29.
4
Mechanism of alcohol oxidation mediated by copper(II) and nitroxyl radicals.
J Am Chem Soc. 2014 Aug 27;136(34):12166-73. doi: 10.1021/ja5070137. Epub 2014 Aug 14.
5
Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems.
Angew Chem Int Ed Engl. 2014 Aug 18;53(34):8824-38. doi: 10.1002/anie.201403110. Epub 2014 Jul 7.
6
Aerobic oxidation catalysis with stable radicals.
Chem Commun (Camb). 2014 May 7;50(35):4524-43. doi: 10.1039/c3cc47081d.
9
Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation.
J Am Chem Soc. 2013 Feb 13;135(6):2357-67. doi: 10.1021/ja3117203. Epub 2013 Jan 31.
10
Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models.
Coord Chem Rev. 2013 Jan 15;257(2):528-540. doi: 10.1016/j.ccr.2012.06.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验