Porter Thomas R, Capitao Dany, Kaminsky Werner, Qian Zhaoshen, Mayer James M
Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195, United States.
Inorg Chem. 2016 Jun 6;55(11):5467-75. doi: 10.1021/acs.inorgchem.6b00491. Epub 2016 May 12.
Two new monomeric Cu(II) alkoxide complexes were prepared and fully characterized as models for intermediates in copper/radical mediated alcohol oxidation catalysis: Tp(tBuR)Cu(II)OCH2CF3 with Tp(tBu) = hydro-tris(3-tert-butyl-pyrazol-1-yl)borate 1 or Tp(tBuMe) = hydro-tris(3-tert-butyl-5-methyl-pyrazol-1-yl)borate 2. These complexes were made as models for potential intermediates in enzymatic and synthetic catalytic cycles for alcohol oxidation. However, the alkoxide ligands are not readily oxidized by loss of H; instead, these complexes were found to be hydrogen atom acceptors. They oxidize the hydroxylamine TEMPOH, 2,4,6-tri-t-butylphenol, and 1,4-cyclohexadiene to the nitroxyl radical, phenoxyl radical, and benzene, with formation of HOCH2CF3 (TFE) and the Cu(I) complexes Tp(tBuR)Cu(I)-MeCN in dichloromethane/1% MeCN or 1/2 [Tp(tBuR)Cu(I)]2 in toluene. On the basis of thermodynamics and kinetics arguments, these reactions likely proceed through concerted proton-electron transfer mechanisms. Thermochemical analyses give lower limits for the "effective bond dissociation free energies (BDFE)" of the O-H bonds in 1/2[Tp(tBuR)Cu(I)]2 + TFE and upper limits for the free energies associated with alkoxide oxidations via hydrogen atom transfer (effective alkoxide α-C-H BDFEs). These values are summations of the free energies of multiple chemical steps, which include the energetically favorable formation of 1/2[Tp(tBuR)Cu(I)]2. The effective alkoxide α-C-H bonds are very weak, BDFE ≤ 38 ± 4 kcal mol(-1) for 1 and ≤44 ± 5 kcal mol(-1) for 2 (gas-phase estimates), because C-H homolysis is thermodynamically coupled to one electron transfer to Cu(II) as well as the favorable formation of the 1/2[Tp(tBuR)Cu(I)]2 dimer. Treating 1 with the H atom acceptor (t)Bu3ArO(•) did not result in the expected alkoxide oxidation to an aldehyde, but rather net 2,2,2-trifluoroethoxyl radical transfer occurred to generate an unusual 2-substituted dienone-ether product. Treating 2 with (t)Bu3ArO(•) gives no reaction, despite evidence that overall ligand oxidation and formation of 1/2[Tp(tBuMe)Cu(I)]2 is significantly exoergic. The origin of this lack of reactivity may be due to insufficient weakening of the alcohol α-C-H bond upon complexation to copper.
制备了两种新型单体铜(II)醇盐配合物,并对其进行了全面表征,作为铜/自由基介导的醇氧化催化中间体的模型:Tp(tBuR)Cu(II)OCH2CF3,其中Tp(tBu) = 氢化三(3-叔丁基-吡唑-1-基)硼酸酯1或Tp(tBuMe) = 氢化三(3-叔丁基-5-甲基-吡唑-1-基)硼酸酯2。这些配合物被制备为醇氧化的酶促和合成催化循环中潜在中间体的模型。然而,醇盐配体不容易通过氢的损失而被氧化;相反,发现这些配合物是氢原子受体。它们将羟胺TEMPOH、2,4,6-三叔丁基苯酚和1,4-环己二烯氧化为硝酰自由基、苯氧基自由基和苯,在二氯甲烷/1%乙腈中形成HOCH2CF3(TFE)和铜(I)配合物Tp(tBuR)Cu(I)-MeCN,或在甲苯中形成1/2 [Tp(tBuR)Cu(I)]2。基于热力学和动力学的观点,这些反应可能通过协同质子-电子转移机制进行。热化学分析给出了1/2[Tp(tBuR)Cu(I)]2 + TFE中O-H键的“有效键解离自由能(BDFE)”的下限,以及通过氢原子转移进行醇盐氧化相关自由能的上限(有效醇盐α-C-H BDFE)。这些值是多个化学步骤自由能的总和,其中包括能量上有利的1/2[Tp(tBuR)Cu(I)]2的形成。有效醇盐α-C-H键非常弱,对于1,气相估计BDFE≤38±4 kcal mol(-1),对于2,BDFE≤44±5 kcal mol(-1),因为C-H均裂在热力学上与向铜(II)的单电子转移以及1/2[Tp(tBuR)Cu(I)]2二聚体的有利形成相耦合。用氢原子受体(t)Bu3ArO(•)处理1并没有导致预期的醇盐氧化为醛,而是发生了净的2,2,2-三氟乙氧基自由基转移,生成了一种不寻常的2-取代二烯酮-醚产物。用(t)Bu3ArO(•)处理2没有反应,尽管有证据表明整体配体氧化和1/2[Tp(tBuMe)Cu(I)]2的形成是显著放热的。这种缺乏反应性的原因可能是由于与铜络合时醇α-C-H键的弱化不足。