Suppr超能文献

相似文献

1
Learning statistical models of phenotypes using noisy labeled training data.
J Am Med Inform Assoc. 2016 Nov;23(6):1166-1173. doi: 10.1093/jamia/ocw028. Epub 2016 May 12.
2
Weakly Semi-supervised phenotyping using Electronic Health records.
J Biomed Inform. 2022 Oct;134:104175. doi: 10.1016/j.jbi.2022.104175. Epub 2022 Sep 5.
3
Automated feature selection of predictors in electronic medical records data.
Biometrics. 2019 Mar;75(1):268-277. doi: 10.1111/biom.12987. Epub 2019 Apr 2.
4
Surrogate-assisted feature extraction for high-throughput phenotyping.
J Am Med Inform Assoc. 2017 Apr 1;24(e1):e143-e149. doi: 10.1093/jamia/ocw135.
6
A machine learning-based framework to identify type 2 diabetes through electronic health records.
Int J Med Inform. 2017 Jan;97:120-127. doi: 10.1016/j.ijmedinf.2016.09.014. Epub 2016 Oct 1.
7
A clinical text classification paradigm using weak supervision and deep representation.
BMC Med Inform Decis Mak. 2019 Jan 7;19(1):1. doi: 10.1186/s12911-018-0723-6.
8
Relational machine learning for electronic health record-driven phenotyping.
J Biomed Inform. 2014 Dec;52:260-70. doi: 10.1016/j.jbi.2014.07.007. Epub 2014 Jul 15.

引用本文的文献

2
Leveraging undecided cases in chart-reviewed phenotypes to enhance EHR-based association studies.
J Biomed Inform. 2025 Jun;166:104839. doi: 10.1016/j.jbi.2025.104839. Epub 2025 Apr 30.
3
Clinical Research Informatics: a Decade-in-Review.
Yearb Med Inform. 2024 Aug;33(1):127-142. doi: 10.1055/s-0044-1800732. Epub 2025 Apr 8.
4
ARCH: Large-scale knowledge graph via aggregated narrative codified health records analysis.
J Biomed Inform. 2025 Feb;162:104761. doi: 10.1016/j.jbi.2024.104761. Epub 2025 Jan 23.
5
Towards automated phenotype definition extraction using large language models.
Genomics Inform. 2024 Oct 31;22(1):21. doi: 10.1186/s44342-024-00023-2.
7
Machine learning to identify chronic cough from administrative claims data.
Sci Rep. 2024 Jan 30;14(1):2449. doi: 10.1038/s41598-024-51522-9.
8
Semi-supervised ROC analysis for reliable and streamlined evaluation of phenotyping algorithms.
J Am Med Inform Assoc. 2024 Feb 16;31(3):640-650. doi: 10.1093/jamia/ocad226.
9
Data-driven automated classification algorithms for acute health conditions: applying PheNorm to COVID-19 disease.
J Am Med Inform Assoc. 2024 Feb 16;31(3):574-582. doi: 10.1093/jamia/ocad241.

本文引用的文献

1
Electronic medical record phenotyping using the anchor and learn framework.
J Am Med Inform Assoc. 2016 Jul;23(4):731-40. doi: 10.1093/jamia/ocw011. Epub 2016 Apr 23.
2
Personalized Predictive Modeling and Risk Factor Identification using Patient Similarity.
AMIA Jt Summits Transl Sci Proc. 2015 Mar 25;2015:132-6. eCollection 2015.
3
Extracting research-quality phenotypes from electronic health records to support precision medicine.
Genome Med. 2015 Apr 30;7(1):41. doi: 10.1186/s13073-015-0166-y. eCollection 2015.
4
Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.
J Am Med Inform Assoc. 2015 Sep;22(5):993-1000. doi: 10.1093/jamia/ocv034. Epub 2015 Apr 29.
5
Intelligent use and clinical benefits of electronic health records in rheumatoid arthritis.
Expert Rev Clin Immunol. 2015 Mar;11(3):329-37. doi: 10.1586/1744666X.2015.1009895. Epub 2015 Feb 8.
7
Automatic identification of methotrexate-induced liver toxicity in patients with rheumatoid arthritis from the electronic medical record.
J Am Med Inform Assoc. 2015 Apr;22(e1):e151-61. doi: 10.1136/amiajnl-2014-002642. Epub 2014 Oct 25.
8
Functional evaluation of out-of-the-box text-mining tools for data-mining tasks.
J Am Med Inform Assoc. 2015 Jan;22(1):121-31. doi: 10.1136/amiajnl-2014-002902. Epub 2014 Oct 21.
10
Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records.
Hum Genet. 2014 Nov;133(11):1369-82. doi: 10.1007/s00439-014-1466-9. Epub 2014 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验