Microfluidics Lab, Department of Aerospace and Mechanics, University of Liège, B-4000 Liège, Belgium.
Phys Rev E. 2016 Apr;93:042202. doi: 10.1103/PhysRevE.93.042202. Epub 2016 Apr 5.
A deterministic low-dimensional iterated map is proposed here to describe the interaction between a bouncing droplet and Faraday waves confined to a circular cavity. Its solutions are investigated theoretically and numerically. The horizontal trajectory of the droplet can be chaotic: it then corresponds to a random walk of average step size equal to half the Faraday wavelength. An analogy is made between the diffusion coefficient of this random walk and the action per unit mass ℏ/m of a quantum particle. The statistics of droplet position and speed are shaped by the cavity eigenmodes, in remarkable agreement with the solution of Schrödinger equation for a quantum particle in a similar potential well.
本文提出了一个确定性低维迭代映射来描述受限在圆形腔中的弹跳液滴与 Faraday 波之间的相互作用。理论和数值研究了其解。液滴的水平轨迹可能是混沌的:此时,它对应于 Faraday 波长的一半的平均步长的随机游走。将这种随机游走的扩散系数与量子粒子的单位质量 ℏ/m 的作用进行类比。液滴位置和速度的统计量由腔本征模形成,与类似势阱中量子粒子的薛定谔方程的解非常吻合。