Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands.
Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands and Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
Phys Rev E. 2016 Apr;93:042501. doi: 10.1103/PhysRevE.93.042501. Epub 2016 Apr 7.
We study the dynamics of a double-stranded DNA (dsDNA) segment, as a semiflexible polymer, in a shear flow, the strength of which is customarily expressed in terms of the dimensionless Weissenberg number Wi. Polymer chains in shear flows are well known to undergo tumbling motion. When the chain lengths are much smaller than the persistence length, one expects a (semiflexible) chain to tumble as a rigid rod. At low Wi, a polymer segment shorter than the persistence length does indeed tumble as a rigid rod. However, for higher Wi the chain does not tumble as a rigid rod, even if the polymer segment is shorter than the persistence length. In particular, from time to time the polymer segment may assume a buckled form, a phenomenon commonly known as Euler buckling. Using a bead-spring Hamiltonian model for extensible dsDNA fragments, we first analyze Euler buckling in terms of the oriented deterministic state (ODS), which is obtained as the steady-state solution of the dynamical equations by turning off the stochastic (thermal) forces at a fixed orientation of the chain. The ODS exhibits symmetry breaking at a critical Weissenberg number Wi_{c}, analogous to a pitchfork bifurcation in dynamical systems. We then follow up the analysis with simulations and demonstrate symmetry breaking in computer experiments, characterized by a unimodal to bimodal transformation of the probability distribution of the second Rouse mode with increasing Wi. Our simulations reveal that shear can cause strong deformation for a chain that is shorter than its persistence length, similar to recent experimental observations.
我们研究了双链 DNA (dsDNA) 片段在剪切流中的动力学,剪切流的强度通常用无量纲魏森贝格数 Wi 来表示。众所周知,在剪切流中聚合物链会经历翻滚运动。当链长远小于持久长度时,人们预计(半刚性)链会像刚性棒一样翻滚。在低 Wi 下,短于持久长度的聚合物段确实会像刚性棒一样翻滚。然而,对于更高的 Wi,即使聚合物段短于持久长度,链也不会像刚性棒一样翻滚。特别是,聚合物段有时可能会呈现出弯曲的形式,这种现象通常被称为欧拉屈曲。我们使用扩展 dsDNA 片段的珠子-弹簧哈密顿模型,首先根据定向确定态 (ODS) 分析欧拉屈曲,ODS 是通过在链的固定取向处关闭随机(热)力从动力学方程的稳态解获得的。ODS 在临界魏森贝格数 Wi_c 处表现出对称破缺,类似于动力系统中的叉形分岔。然后,我们通过模拟进行了分析,并在计算机实验中证明了对称破缺,这表现为第二罗瑟模式的概率分布从单峰到双峰的转变,Wi 增加。我们的模拟表明,剪切可以对短于其持久长度的链造成强烈的变形,这与最近的实验观察结果相似。