Panja Debabrata, Barkema Gerard T, van Leeuwen J M J
Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands and Institute of Physics, Universiteit van Amsterdam, Science Park 904, Postbus 94485, 1090 GL Amsterdam, The Netherlands.
Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands and Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032603. doi: 10.1103/PhysRevE.92.032603. Epub 2015 Sep 29.
Using a recently developed bead-spring model for semiflexible polymers that takes into account their natural extensibility, we report an efficient algorithm to simulate the dynamics for polymers like double-stranded DNA (dsDNA) in the absence of hydrodynamic interactions. The dsDNA is modeled with one bead-spring element per base pair, and the polymer dynamics is described by the Langevin equation. The key to efficiency is that we describe the equations of motion for the polymer in terms of the amplitudes of the polymer's fluctuation modes, as opposed to the use of the physical positions of the beads. We show that, within an accuracy tolerance level of 5% of several key observables, the model allows for single Langevin time steps of ≈1.6, 8, 16, and 16 ps for a dsDNA model chain consisting of 64, 128, 256, and 512 base pairs (i.e., chains of 0.55, 1.11, 2.24, and 4.48 persistence lengths), respectively. Correspondingly, in 1 h, a standard desktop computer can simulate 0.23, 0.56, 0.56, and 0.26 ms of these dsDNA chains, respectively. We compare our results to those obtained from other methods, in particular, the (inextensible discretized) wormlike chain (WLC) model. Importantly, we demonstrate that at the same level of discretization, i.e., when each discretization element is one base pair long, our algorithm gains about five to six orders of magnitude in the size of time steps over the inextensible WLC model. Further, we show that our model can be mapped one on one to a discretized version of the extensible WLC model, implying that the speed-up we achieve in our model must hold equally well for the latter. We also demonstrate the use of the method by simulating efficiently the tumbling behavior of a dsDNA segment in a shear flow.
利用最近开发的一种用于半柔性聚合物的珠簧模型,该模型考虑了聚合物的自然可扩展性,我们报告了一种高效算法,用于在不存在流体动力学相互作用的情况下模拟双链DNA(dsDNA)等聚合物的动力学。每个碱基对用一个珠簧元件对dsDNA进行建模,聚合物动力学由朗之万方程描述。效率的关键在于,我们根据聚合物涨落模式的振幅来描述聚合物的运动方程,而不是使用珠子的物理位置。我们表明,在几个关键可观测量的5%的精度容差水平内,对于由64、128、256和512个碱基对组成的dsDNA模型链(即持续长度分别为0.55、1.11、2.24和4.48的链),该模型允许的单个朗之万时间步长分别约为1.6、8、16和16皮秒。相应地,在1小时内,一台标准台式计算机可以分别模拟这些dsDNA链0.23、0.56、0.56和0.26毫秒的动力学。我们将我们的结果与其他方法得到的结果进行比较,特别是(不可扩展离散化的)蠕虫状链(WLC)模型。重要的是,我们证明了在相同的离散化水平下,即当每个离散化单元为一个碱基对长时,我们的算法在时间步长大小上比不可扩展的WLC模型提高了约五到六个数量级。此外,我们表明我们的模型可以一对一地映射到可扩展WLC模型的离散化版本,这意味着我们在模型中实现的加速对于后者同样适用。我们还通过有效地模拟dsDNA片段在剪切流中的翻滚行为来演示该方法的应用。