Freeman Krista G, Behrens Manja A, Streletzky Kiril A, Olsson Ulf, Evilevitch Alex
Carnegie Mellon University , Department of Physics, Pittsburgh, Pennsylvania, United States.
Lund University , Division of Physical Chemistry, Lund, Sweden.
J Phys Chem B. 2016 Jul 7;120(26):6421-9. doi: 10.1021/acs.jpcb.6b04172. Epub 2016 May 31.
Through a unique combination of time-resolved single-molecule (cryo-TEM) and bulk measurements (light scattering and small-angle X-ray scattering), we provide a detailed study of the dynamics of stochastic DNA ejection events from phage λ. We reveal that both binding with the specific phage receptor, LamB, and thermo-mechanical destabilization of the portal vertex on the capsid are required for initiation of ejection of the pressurized λ-DNA from the phage. Specifically, we found that a measurable activation energy barrier for initiation of DNA ejection with LamB present, Ea = (1.2 ± 0.1) × 10(-19) J/phage (corresponding to ∼28 kTbody/phage at Tbody = 37 °C), results in 15 times increased rate of ejection event dynamics when the temperature is raised from 15 to 45 °C (7.5 min versus 30 s average lag time for initiation of ejection). This suggests that phages have a double fail-safe mechanism for ejection-in addition to receptor binding, phage must also overcome (through thermal energy and internal DNA pressure) an energy barrier for DNA ejection. This energy barrier ensures that viral genome ejection into cells occurs with high efficiency only when the temperature conditions are favorable for genome replication. At lower suboptimal temperatures, the infectious phage titer is preserved over much longer times, since DNA ejection dynamics is strongly inhibited even in the presence of solubilized receptor or susceptible cells. This work also establishes a light scattering based approach to investigate the influence of external solution conditions, mimicking those of the bacterial cytoplasm, on the stability of the viral capsid portal, which is directly linked to dynamics of virion deactivation.
通过时间分辨单分子(低温透射电子显微镜)和体相测量(光散射和小角X射线散射)的独特结合,我们对噬菌体λ随机DNA喷射事件的动力学进行了详细研究。我们发现,与特定噬菌体受体LamB的结合以及衣壳上门户顶点的热机械去稳定化都是从噬菌体中喷射加压λ-DNA起始所必需的。具体而言,我们发现,在存在LamB的情况下,DNA喷射起始存在一个可测量的活化能垒,Ea = (1.2 ± 0.1) × 10(-19) J/噬菌体(在体温Tbody = 37 °C时相当于约28 kTbody/噬菌体),当温度从15 °C升高到45 °C时,喷射事件动力学速率提高了15倍(喷射起始的平均滞后时间从7.5分钟变为30秒)。这表明噬菌体具有双重故障安全喷射机制——除了受体结合外,噬菌体还必须(通过热能和内部DNA压力)克服DNA喷射的能量垒。这个能量垒确保只有在温度条件有利于基因组复制时,病毒基因组才会高效地喷射到细胞中。在较低的非最适温度下,感染性噬菌体滴度能在更长时间内保持,因为即使存在溶解的受体或易感细胞,DNA喷射动力学也会受到强烈抑制。这项工作还建立了一种基于光散射的方法,以研究模拟细菌细胞质的外部溶液条件对病毒衣壳门户稳定性的影响,这与病毒体失活的动力学直接相关。