Utkin Lev V, Chekh Anatoly I, Zhuk Yulia A
Peter the Great Saint-Petersburg Polytechnic University, Russia.
Saint Petersburg State Electrotechnical University, Russia.
Neural Netw. 2016 Aug;80:53-66. doi: 10.1016/j.neunet.2016.04.005. Epub 2016 Apr 27.
Classification algorithms based on different forms of support vector machines (SVMs) for dealing with interval-valued training data are proposed in the paper. L2-norm and L∞-norm SVMs are used for constructing the algorithms. The main idea allowing us to represent the complex optimization problems as a set of simple linear or quadratic programming problems is to approximate the Gaussian kernel by the well-known triangular and Epanechnikov kernels. The minimax strategy is used to choose an optimal probability distribution from the set and to construct optimal separating functions. Numerical experiments illustrate the algorithms.
本文提出了基于不同形式支持向量机(SVM)的分类算法,用于处理区间值训练数据。采用L2范数和L∞范数支持向量机来构建算法。通过用著名的三角核和埃帕涅尼科夫核逼近高斯核,将复杂的优化问题表示为一组简单的线性或二次规划问题,这是该算法的主要思想。采用极小极大策略从集合中选择最优概率分布并构建最优分离函数。数值实验对这些算法进行了说明。