Suppr超能文献

静电网络控制PapC外膜蛋白转运通道中塞子的稳定。

Electrostatic networks control plug stabilization in the PapC usher.

作者信息

Pham Thieng, Henderson Nadine S, Werneburg Glenn T, Thanassi David G, Delcour Anne H

机构信息

a Department of Biology and Biochemistry , University of Houston , Houston , TX and.

b Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook , NY , USA.

出版信息

Mol Membr Biol. 2015 Aug-Dec;32(5-8):198-207. doi: 10.3109/09687688.2016.1160450. Epub 2016 May 16.

Abstract

The PapC usher, a β-barrel pore in the outer membrane of uropathogenic Escherichia coli, is used for assembly of the P pilus, a key virulence factor in bacterial colonization of human kidney cells. Each PapC protein is composed of a 24-stranded β-barrel channel, flanked by N- and C-terminal globular domains protruding into the periplasm, and occluded by a plug domain (PD). The PD is displaced from the channel towards the periplasm during pilus biogenesis, but the molecular mechanism for PD displacement remains unclear. Two structural features within the β-barrel, an α-helix and β5-6 hairpin loop, may play roles in controlling plug stabilization. Here we have tested clusters of residues at the interface of the plug, barrel, α-helix and hairpin, which participate in electrostatic networks. To assess the roles of these residues in plug stabilization, we used patch-clamp electrophysiology to compare the activity of wild-type and mutant PapC channels containing alanine substitutions at these sites. Mutations interrupting each of two salt bridge networks were relatively ineffective in disrupting plug stabilization. However, mutation of two pairs of arginines located at the inner and the outer surfaces of the PD resulted in an enhanced propensity for plug displacement. One arginine pair involved in a repulsive interaction between the linkers that tether the plug to the β-barrel was particularly sensitive to mutation. These results suggest that plug displacement, which is necessary for pilus assembly and translocation, may require a weakening of key electrostatic interactions between the plug linkers, and the plug and the α-helix.

摘要

PapC外膜蛋白转运体是尿路致病性大肠杆菌外膜中的一种β桶状孔道,用于组装P菌毛,这是细菌在人肾细胞定殖中的关键毒力因子。每个PapC蛋白由一个24链的β桶状通道组成,两侧是伸向周质的N端和C端球状结构域,并被一个堵塞结构域(PD)封闭。在菌毛生物合成过程中,PD从通道向周质移位,但其移位的分子机制仍不清楚。β桶状结构内的两个结构特征,即一个α螺旋和β5-6发夹环,可能在控制堵塞结构的稳定中发挥作用。在这里,我们测试了参与静电网络的堵塞结构、桶状结构、α螺旋和发夹环界面处的残基簇。为了评估这些残基在堵塞结构稳定中的作用,我们使用膜片钳电生理学来比较野生型和在这些位点含有丙氨酸替代的突变型PapC通道的活性。破坏两个盐桥网络中每一个的突变在破坏堵塞结构稳定方面相对无效。然而,位于PD内表面和外表面的两对精氨酸的突变导致堵塞结构移位倾向增强。参与将堵塞结构连接到β桶状结构的连接子之间排斥相互作用的一对精氨酸对突变特别敏感。这些结果表明,菌毛组装和转运所必需的堵塞结构移位可能需要削弱堵塞结构连接子与堵塞结构以及堵塞结构与α螺旋之间的关键静电相互作用。

相似文献

1
Electrostatic networks control plug stabilization in the PapC usher.静电网络控制PapC外膜蛋白转运通道中塞子的稳定。
Mol Membr Biol. 2015 Aug-Dec;32(5-8):198-207. doi: 10.3109/09687688.2016.1160450. Epub 2016 May 16.
3
4
Molecular basis of usher pore gating in Escherichia coli pilus biogenesis.大肠杆菌菌毛生物发生中 usher 孔门控的分子基础。
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20741-6. doi: 10.1073/pnas.1320528110. Epub 2013 Dec 2.

本文引用的文献

2
The β-barrel membrane protein insertase machinery from Gram-negative bacteria.革兰氏阴性菌的β-桶状膜蛋白插入酶机制。
Curr Opin Struct Biol. 2015 Apr;31:35-42. doi: 10.1016/j.sbi.2015.02.012. Epub 2015 Mar 19.
5
Structural basis for outer membrane lipopolysaccharide insertion.外膜脂多糖插入的结构基础。
Nature. 2014 Jul 3;511(7507):52-6. doi: 10.1038/nature13464. Epub 2014 Jun 18.
7
Molecular basis of usher pore gating in Escherichia coli pilus biogenesis.大肠杆菌菌毛生物发生中 usher 孔门控的分子基础。
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20741-6. doi: 10.1073/pnas.1320528110. Epub 2013 Dec 2.
8
The molecular dissection of the chaperone-usher pathway.伴侣蛋白-外膜蛋白途径的分子剖析
Biochim Biophys Acta. 2014 Aug;1843(8):1559-67. doi: 10.1016/j.bbamcr.2013.09.023. Epub 2013 Oct 16.
10
Electrophysiology of bacteria.细菌的电生理学。
Annu Rev Microbiol. 2013;67:179-97. doi: 10.1146/annurev-micro-092412-155637.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验