Department of Materials Science and Engineering, University of Delaware, 19716, USA.
Department of Physics and Astronomy, University of Delaware, 19716, USA.
Acta Biomater. 2016 Sep 1;41:235-46. doi: 10.1016/j.actbio.2016.05.016. Epub 2016 May 12.
Poly(3,4-ethylenedioxythiophenes) (PEDOT) have been extensively explored as materials for biomedical implants such as biosensors, tissue engineering scaffolds and microelectronic devices. Considerable effort has been made to incorporate biologically active molecules into the conducting polymer films in order to improve their long term performance at the soft tissue interface of devices, and the development of functionalized conducting polymers that can be modified with biomolecules would offer important options for device improvement. Here we report surface modification, via straightforward protocols, of carboxylic-acid-functional PEDOT copolymer films with the nonapeptide, CDPGYIGSR, derived from the basement membrane protein laminin. Evaluation of the modified surfaces via XPS and toluidine blue O assay confirmed the presence of the peptide on the surface and electrochemical analysis demonstrated unaltered properties of the peptide-modified films. The efficacy of the peptide, along with the impact of a spacer molecule, for cell adhesion and differentiation was tested in cell culture assays employing the rat pheochromocytoma (PC12) cell line. Peptide-modified films comprising the longest poly(ethylene glycol) (PEG) spacer used in this study, a PEG with ten ethylene glycol repeats, demonstrated the best attachment and neurite outgrowth compared to films with peptides alone or those with a PEG spacer comprising three ethylene glycol units. The films with PEG10-CDPGYISGR covalently modified to the surface demonstrated 11.5% neurite expression with a mean neurite length of 90μm. This peptide immobilization technique provides an effective approach to biofunctionalize conducting polymer films.
For enhanced diagnosis and treatment, electronic devices that interface with living tissue with minimum shortcomings are critical. Towards these ends, conducting polymers have proven to be excellent materials for electrode-tissue interface for a variety of biomedical devices ranging from deep brain stimulators, cochlear implants, and microfabricated cortical electrodes. To improve the electrode-tissue interface, one strategy utilized by many researchers is incorporating relevant biological molecules within or on the conducting polymer thin films to provide a surface for cell attachment and/or provide biological cues for cell growth. The present study provides a facile means for generating PEDOT films grafted with a laminin peptide with or without a spacer molecule for enhanced cell attachment and neurite extension.
聚(3,4-亚乙基二氧噻吩)(PEDOT)已被广泛探索作为生物医学植入物的材料,例如生物传感器、组织工程支架和微电子设备。人们已经做出了相当大的努力,将生物活性分子掺入到导电聚合物薄膜中,以提高其在设备的软组织界面中的长期性能,并且开发可以用生物分子进行修饰的功能化导电聚合物将为设备改进提供重要选择。在这里,我们通过简单的方案,报告了羧酸官能化的 PEDOT 共聚物薄膜的表面修饰,该共聚物薄膜带有源自基底膜蛋白层粘连蛋白的非肽 CDPGYIGSR。通过 XPS 和甲苯胺蓝 O 测定法评估修饰表面证实了肽在表面上的存在,并且电化学分析表明肽修饰膜的性质未改变。在使用大鼠嗜铬细胞瘤(PC12)细胞系的细胞培养测定中,测试了肽的功效以及间隔分子对细胞黏附和分化的影响。在这项研究中使用的最长的聚(乙二醇)(PEG)间隔子的肽修饰膜,PEG 具有十个乙二醇重复单元,与仅含有肽的膜或具有包含三个乙二醇单元的 PEG 间隔子的膜相比,表现出最佳的附着和神经突生长。共价修饰到表面的 PEG10-CDPGYISGR 肽的膜显示出 11.5%的神经突表达,平均神经突长度为 90μm。这种肽固定技术为功能化导电聚合物薄膜提供了一种有效方法。
为了增强诊断和治疗效果,与活体组织具有最小缺点的电子设备至关重要。为此,导电聚合物已被证明是各种生物医学设备(从深部脑刺激器、耳蜗植入物和微制造的皮质电极)的电极-组织界面的极好材料。为了改善电极-组织界面,许多研究人员使用的一种策略是在导电聚合物薄膜内或上掺入相关的生物分子,以提供细胞附着的表面和/或为细胞生长提供生物线索。本研究提供了一种简便的方法,用于生成接枝有或没有间隔子分子的 PEDOT 薄膜,以增强细胞附着和神经突延伸。