Suppr超能文献

表征高斯扩散导致的磁共振信号衰减:路径积分方法及一种简便的计算方法。

Characterizing magnetic resonance signal decay due to Gaussian diffusion: the path integral approach and a convenient computational method.

作者信息

Özarslan Evren, Westin Carl-Fredrik, Mareci Thomas H

机构信息

Department of Physics, Bođaziçi University, Bebek, Ýstanbul, Turkey; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Concepts Magn Reson Part A Bridg Educ Res. 2015 Jul;44(4):203-213. doi: 10.1002/cmr.a.21354. Epub 2015 Dec 21.

Abstract

The influence of Gaussian diffusion on the magnetic resonance signal is determined by the apparent diffusion coefficient (ADC) and tensor (ADT) of the diffusing fluid as well as the gradient waveform applied to sensitize the signal to diffusion. Estimations of ADC and ADT from diffusion-weighted acquisitions necessitate computations of, respectively, the -value and -matrix associated with the employed pulse sequence. We establish the relationship between these quantities and the gradient waveform by expressing the problem as a path integral and explicitly evaluating it. Further, we show that these important quantities can be conveniently computed for any gradient waveform using a simple algorithm that requires a few lines of code. With this representation, our technique complements the multiple correlation function (MCF) method commonly used to compute the effects of restricted diffusion, and provides a consistent and convenient framework for studies that aim to infer the microstructural features of the specimen.

摘要

高斯扩散对磁共振信号的影响由扩散流体的表观扩散系数(ADC)和张量(ADT)以及用于使信号对扩散敏感的梯度波形决定。从扩散加权采集中估计ADC和ADT分别需要计算与所采用脉冲序列相关的-值和-矩阵。我们通过将问题表示为路径积分并明确求值来建立这些量与梯度波形之间的关系。此外,我们表明使用一个只需几行代码的简单算法就可以方便地为任何梯度波形计算这些重要量。通过这种表示,我们的技术补充了常用于计算受限扩散效应的多重相关函数(MCF)方法,并为旨在推断样本微观结构特征的研究提供了一个一致且方便的框架。

相似文献

1
Characterizing magnetic resonance signal decay due to Gaussian diffusion: the path integral approach and a convenient computational method.
Concepts Magn Reson Part A Bridg Educ Res. 2015 Jul;44(4):203-213. doi: 10.1002/cmr.a.21354. Epub 2015 Dec 21.
3
Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure.
Neuroimage. 2016 Feb 15;127:422-434. doi: 10.1016/j.neuroimage.2015.11.027. Epub 2015 Nov 14.
4
Microscopic interpretation and generalization of the Bloch-Torrey equation for diffusion magnetic resonance.
J Magn Reson. 2017 Apr;277:95-103. doi: 10.1016/j.jmr.2017.01.018. Epub 2017 Jan 27.
6
Practical computation of the diffusion MRI signal of realistic neurons based on Laplace eigenfunctions.
NMR Biomed. 2020 Oct;33(10):e4353. doi: 10.1002/nbm.4353. Epub 2020 Jul 29.
7
Can anomalous diffusion models in magnetic resonance imaging be used to characterise white matter tissue microstructure?
Neuroimage. 2018 Jul 15;175:122-137. doi: 10.1016/j.neuroimage.2018.03.052. Epub 2018 Mar 30.
8
Simultaneous magnetic resonance imaging of diffusion anisotropy and diffusion gradient.
Magn Reson Imaging. 2008 Apr;26(3):337-46. doi: 10.1016/j.mri.2007.08.008. Epub 2008 Jan 14.
10
The displacement correlation tensor: microstructure, ensemble anisotropy and curving fibers.
J Magn Reson. 2011 Jan;208(1):34-43. doi: 10.1016/j.jmr.2010.10.003. Epub 2010 Oct 8.

引用本文的文献

2
.
Neuroimage. 2021 Sep;238:118198. doi: 10.1016/j.neuroimage.2021.118198. Epub 2021 May 21.
3
Effective potential for magnetic resonance measurements of restricted diffusion.
Front Phys. 2017;5. doi: 10.3389/fphy.2017.00068. Epub 2017 Dec 19.
4
Dynamics of local magnetization in the eigenbasis of the Bloch-Torrey operator.
J Chem Phys. 2017 Mar 28;146(12):124201. doi: 10.1063/1.4978621.

本文引用的文献

1
Conceptual Foundations of Diffusion in Magnetic Resonance.
Concepts Magn Reson Part A Bridg Educ Res. 2013 Jul;42(4):116-129. doi: 10.1002/cmr.a.21269. Epub 2013 Aug 10.
2
Intrinsic diffusion sensitivity of the balanced steady-state free precession (bSSFP) imaging sequence.
NMR Biomed. 2015 Nov;28(11):1383-92. doi: 10.1002/nbm.3380. Epub 2015 Sep 7.
3
Measurement tensors in diffusion MRI: generalizing the concept of diffusion encoding.
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):209-16. doi: 10.1007/978-3-319-10443-0_27.
5
Diffusion imaging with balanced steady state free precession.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:90-3. doi: 10.1109/EMBC.2012.6345878.
6
Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset.
J Neurosci. 2012 Nov 28;32(48):17365-72. doi: 10.1523/JNEUROSCI.2904-12.2012.
7
NMR-based diffusion pore imaging.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021906. doi: 10.1103/PhysRevE.86.021906. Epub 2012 Aug 7.
8
In vivo detection of microscopic anisotropy using quadruple pulsed-field gradient (qPFG) diffusion MRI on a clinical scanner.
Neuroimage. 2013 Jan 1;64:229-39. doi: 10.1016/j.neuroimage.2012.08.048. Epub 2012 Aug 25.
10
Double pulsed field gradient (double-PFG) MR imaging (MRI) as a means to measure the size of plant cells.
Magn Reson Chem. 2011 Dec;49 Suppl 1(Suppl 1):S79-84. doi: 10.1002/mrc.2797.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验