Giovannini Giulia, Böhlen Till, Cabal Gonzalo, Bauer Julia, Tessonnier Thomas, Frey Kathrin, Debus Jürgen, Mairani Andrea, Parodi Katia
Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748, Garching b. München, Germany.
University of Pavia, Department of Physics, Via Bassi 6, I-27100, Pavia, Italy.
Radiat Oncol. 2016 May 17;11:68. doi: 10.1186/s13014-016-0642-6.
In proton radiation therapy a constant relative biological effectiveness (RBE) of 1.1 is usually assumed. However, biological experiments have evidenced RBE dependencies on dose level, proton linear energy transfer (LET) and tissue type. This work compares the predictions of three of the main radio-biological models proposed in the literature by Carabe-Fernandez, Wedenberg, Scholz and coworkers.
Using the chosen models, a spread-out Bragg peak (SOBP) as well as two exemplary clinical cases (single field and two fields) for cranial proton irradiation, all delivered with state-of-the-art pencil-beam scanning, have been analyzed in terms of absorbed dose, dose-averaged LET (LET D ), RBE-weighted dose (D RBE) and biological range shift distributions.
In the systematic comparison of RBE predictions by the three models we could show different levels of agreement depending on (α/β) x and LET values. The SOBP study emphasizes the variation of LET D and RBE not only as a function of depth but also of lateral distance from the central beam axis. Application to clinical-like scenario shows consistent discrepancies from the values obtained for a constant RBE of 1.1, when using a variable RBE scheme for proton irradiation in tissues with low (α/β) x , regardless of the model. Biological range shifts of 0.6- 2.4 mm (for high (α/β) x ) and 3.0 - 5.4 mm (for low (α/β) x ) were found from the fall-off analysis of individual profiles of RBE-weighted fraction dose along the beam penetration depth.
Although more experimental evidence is needed to validate the accuracy of the investigated models and their input parameters, their consistent trend suggests that their main RBE dependencies (dose, LET and (α/β) x ) should be included in treatment planning systems. In particular, our results suggest that simpler models based on the linear-quadratic formalism and LETD might already be sufficient to reproduce important RBE dependencies for re-evaluation of plans optimized with the current RBE = 1.1 approximation. This approach would be a first step forward to consider RBE variations in proton therapy, thus enabling a more robust choice of biological dose delivery. The latter could in turn impact clinical outcome, especially in terms of reduced toxicities for tumors adjacent to organs at risk.
在质子放射治疗中,通常假定相对生物效应(RBE)恒定为1.1。然而,生物学实验已证明RBE取决于剂量水平、质子线性能量传递(LET)和组织类型。这项工作比较了Carabe-Fernandez、Wedenberg、Scholz及其同事在文献中提出的三种主要放射生物学模型的预测结果。
使用所选模型,对一个扩展布拉格峰(SOBP)以及两个用于头颅质子照射的典型临床病例(单野和双野)进行了分析,所有照射均采用最先进的笔形束扫描技术,分析内容包括吸收剂量、剂量平均LET(LET D )、RBE加权剂量(D RBE)和生物学射程位移分布。
在对三种模型的RBE预测进行系统比较时,我们发现根据(α/β)x 和LET值的不同,模型之间的一致性程度也有所不同。SOBP研究强调了LET D 和RBE不仅随深度变化,还随离中心束轴的横向距离变化。应用于类似临床的场景时,当在低(α/β)x 的组织中使用可变RBE方案进行质子照射时,无论采用哪种模型,与恒定RBE为1.1时获得的值相比,都会出现一致的差异。通过对沿束穿透深度的RBE加权分数剂量的单个剖面进行衰减分析,发现生物学射程位移在0.6 - 2.4 mm(对于高(α/β)x )和3.0 - 5.4 mm(对于低(α/β)x )之间。
尽管需要更多的实验证据来验证所研究模型及其输入参数的准确性,但它们一致的趋势表明,其主要的RBE依赖性(剂量、LET和(α/β)x )应纳入治疗计划系统。特别是,我们的结果表明,基于线性二次形式和LETD的更简单模型可能已经足以再现重要的RBE依赖性,以便重新评估采用当前RBE = 1.1近似值优化的计划。这种方法将是在质子治疗中考虑RBE变化的第一步,从而能够更稳健地选择生物剂量输送方式。后者进而可能影响临床结果,特别是在降低危及器官附近肿瘤的毒性方面。