Suppr超能文献

用于局部疲劳监测的肌纤维传导速度跟踪专用集成电路。

A Muscle Fibre Conduction Velocity Tracking ASIC for Local Fatigue Monitoring.

出版信息

IEEE Trans Biomed Circuits Syst. 2016 Dec;10(6):1119-1128. doi: 10.1109/TBCAS.2016.2520563. Epub 2016 May 13.

Abstract

Electromyography analysis can provide information about a muscle's fatigue state by estimating Muscle Fibre Conduction Velocity (MFCV), a measure of the travelling speed of Motor Unit Action Potentials (MUAPs) in muscle tissue. MFCV better represents the physical manifestations of muscle fatigue, compared to the progressive compression of the myoelectic Power Spectral Density, hence it is more suitable for a muscle fatigue tracking system. This paper presents a novel algorithm for the estimation of MFCV using single threshold bit-stream conversion and a dedicated application-specified integrated circuit (ASIC) for its implementation, suitable for a compact, wearable and easy to use muscle fatigue monitor. The presented ASIC is implemented in a commercially available AMS 0.35 [Formula: see text] CMOS technology and utilizes a bit-stream cross-correlator that estimates the conduction velocity of the myoelectric signal in real time. A test group of 20 subjects was used to evaluate the performance of the developed ASIC, achieving good accuracy with an error of only 3.2% compared to Matlab.

摘要

肌电图分析可以通过估计肌肉纤维传导速度(MFCV)来提供肌肉疲劳状态的信息,MFCV 是肌肉组织中运动单位动作电位(MUAP)传播速度的度量。与肌电功率谱密度的渐进压缩相比,MFCV 更好地代表了肌肉疲劳的物理表现,因此更适合肌肉疲劳跟踪系统。本文提出了一种使用单阈值比特流转换和专用专用集成电路(ASIC)来实现 MFCV 估计的新算法,适用于紧凑、可穿戴和易于使用的肌肉疲劳监测器。所提出的 ASIC 是在商业可用的 AMS 0.35 [公式:见文本] CMOS 技术中实现的,并利用比特流互相关器实时估计肌电信号的传导速度。使用 20 名受试者的测试组评估了开发的 ASIC 的性能,与 Matlab 相比,其误差仅为 3.2%,精度良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验