Suppr超能文献

利用可穿戴设备检测健身活动中的肱二头肌疲劳。

Towards Detecting Biceps Muscle Fatigue in Gym Activity Using Wearables.

机构信息

Department of Computer Science and Software Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.

出版信息

Sensors (Basel). 2021 Jan 23;21(3):759. doi: 10.3390/s21030759.

Abstract

Fatigue is a naturally occurring phenomenon during human activities, but it poses a bigger risk for injuries during physically demanding activities, such as gym activities and athletics. Several studies show that bicep muscle fatigue can lead to various injuries that may require up to 22 weeks of treatment. In this work, we adopt a wearable approach to detect biceps muscle fatigue during a bicep concentration curl exercise as an example of a gym activity. Our dataset consists of 3000 bicep curls from twenty middle-aged volunteers at ages between 27 to 30 and Body Mass Index (BMI) ranging between 18 to 28. All volunteers have been gym-goers for at least 1 year with no records of chronic diseases, muscle, or bone surgeries. We encountered two main challenges while collecting our dataset. The first challenge was the dumbbell's suitability, where we found that a dumbbell weight (4.5 kg) provides the best tradeoff between longer recording sessions and the occurrence of fatigue on exercises. The second challenge is the subjectivity of RPE, where we average the reported RPE with the measured heart rate converted to RPE. We observed from our data that fatigue reduces the biceps' angular velocity; therefore, it increases the completion time for later sets. We extracted a total of 33 features from our dataset, which have been reduced to 16 features. These features are the most overall representative and correlated with bicep curl movement, yet they are fatigue-specific features. We utilized these features in five machine learning models, which are Generalized Linear Models (GLM), Logistic Regression (LR), Random Forests (RF), Decision Trees (DT), and Feedforward Neural Networks (FNN). We found that using a two-layer FNN achieves an accuracy of 98% and 88% for subject-specific and cross-subject models, respectively. The results presented in this work are useful and represent a solid start for moving into a real-world application for detecting the fatigue level in bicep muscles using wearable sensors as we advise athletes to take fatigue into consideration to avoid fatigue-induced injuries.

摘要

疲劳是人类活动中自然发生的现象,但在体力要求高的活动中,如健身活动和运动,它会带来更大的受伤风险。几项研究表明,肱二头肌肌肉疲劳会导致各种伤害,可能需要长达 22 周的治疗。在这项工作中,我们采用可穿戴方法来检测肱二头肌集中卷曲运动中的肱二头肌疲劳,作为健身活动的一个例子。我们的数据集由 20 名年龄在 27 岁至 30 岁之间、BMI 在 18 至 28 之间的中年志愿者的 3000 次二头肌卷曲组成。所有志愿者都至少有 1 年的健身经验,没有慢性病、肌肉或骨骼手术的记录。在收集数据集时,我们遇到了两个主要挑战。第一个挑战是哑铃的适用性,我们发现哑铃重量(4.5 公斤)在更长的记录时间和运动中疲劳的发生之间提供了最佳的折衷。第二个挑战是 RPE 的主观性,我们将报告的 RPE 与测量的心率转换为 RPE 进行平均。我们从数据中观察到,疲劳会降低肱二头肌的角速度;因此,它会增加后续组的完成时间。我们从数据集中提取了总共 33 个特征,这些特征已减少到 16 个特征。这些特征是最全面的代表性和与二头肌卷曲运动相关的特征,但它们是疲劳特异性特征。我们在五个机器学习模型中使用了这些特征,这些模型分别是广义线性模型(GLM)、逻辑回归(LR)、随机森林(RF)、决策树(DT)和前馈神经网络(FNN)。我们发现,使用两层 FNN 可以实现 98%和 88%的受试者特异性和跨受试者模型的准确性。本工作中提出的结果是有用的,为使用可穿戴传感器检测二头肌肌肉疲劳水平进入实际应用奠定了坚实的基础,我们建议运动员考虑疲劳因素,以避免疲劳引起的伤害。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c09/7865622/8d1a0c71afc0/sensors-21-00759-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验