Suppr超能文献

基于接枝聚合物的铂纳米粒子的电催化(生物)纳米结构用于分析目的。

Electrocatalytic (Bio)Nanostructures Based on Polymer-Grafted Platinum Nanoparticles for Analytical Purpose.

机构信息

NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.

LLB, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.

出版信息

ACS Appl Mater Interfaces. 2016 Jun 15;8(23):14747-55. doi: 10.1021/acsami.6b02956. Epub 2016 Jun 6.

Abstract

Functionalized platinum nanoparticles (PtNPs) possess electrocatalytic properties toward H2O2 oxidation, which are of great interest for the construction of electrochemical oxidoreductase-based sensors. In this context, we have shown that polymer-grafted PtNPs could efficiently be used as building bricks for electroactive structures. In the present work, we prepared different 2D-nanostructures based on these elementary bricks, followed by the subsequent grafting of enzymes. The aim was to provide well-defined architectures to establish a correlation between their electrocatalytic properties and the arrangement of building bricks. Two different nanostructures have been elaborated via the smart combination of surface initiated-atom transfer radical polymerization (SI-ATRP), functionalized PtNPs (Br-PtNPs) and Langmuir-Blodgett (LB) technique. The first nanostructure (A) has been elaborated from LB films of poly(methacrylic acid)-grafted PtNPs (PMAA-PtNPs). The second nanostructure (B) consisted in the elaboration of polymer brushes (PMAA brushes) from Br-PtNPs LB films. In both systems, grafting of the glucose oxidase (GOx) has been performed directly to nanostructures, via peptide bonding. Structural features of nanostructures have been carefully characterized (compression isotherms, neutron reflectivity, and profilometry) and correlated to their electrocatalytic properties toward H2O2 oxidation or glucose sensing.

摘要

功能化的铂纳米粒子 (PtNPs) 具有对 H2O2 氧化的电催化性质,这对于构建基于电化学氧化还原酶的传感器非常有兴趣。在这种情况下,我们已经表明,接枝聚合物的 PtNPs 可以有效地用作电化学活性结构的构建基块。在本工作中,我们基于这些基本的构建块制备了不同的 2D 纳米结构,随后对酶进行了接枝。目的是提供明确定义的结构,以建立它们的电催化性质与构建块排列之间的相关性。通过巧妙地结合表面引发原子转移自由基聚合 (SI-ATRP)、功能化 PtNPs (Br-PtNPs) 和 Langmuir-Blodgett (LB) 技术,我们设计了两种不同的纳米结构。第一种纳米结构 (A) 是由接枝有聚(甲基丙烯酸)的 PtNPs (PMAA-PtNPs) 的 LB 膜制备的。第二种纳米结构 (B) 是通过 Br-PtNPs LB 膜制备聚合物刷 (PMAA 刷) 而得到的。在这两种体系中,葡萄糖氧化酶 (GOx) 的接枝都是通过肽键直接接枝到纳米结构上。纳米结构的结构特征已被仔细表征 (压缩等温线、中子反射率和轮廓术),并与它们对 H2O2 氧化或葡萄糖传感的电催化性质相关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验