Suppr超能文献

淋巴细胞激活基因-3、T细胞免疫球蛋白黏蛋白-3和T细胞免疫受体Ig和ITIM结构域:在免疫调节中具有特殊功能的共抑制受体。

Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation.

作者信息

Anderson Ana C, Joller Nicole, Kuchroo Vijay K

机构信息

Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland.

出版信息

Immunity. 2016 May 17;44(5):989-1004. doi: 10.1016/j.immuni.2016.05.001.

Abstract

Co-inhibitory receptors, such as CTLA-4 and PD-1, have an important role in regulating T cell responses and have proven to be effective targets in the setting of chronic diseases where constitutive co-inhibitory receptor expression on T cells dampens effector T cell responses. Unfortunately, many patients still fail to respond to therapies that target CTLA-4 and PD-1. The next wave of co-inhibitory receptor targets that are being explored in clinical trials include Lag-3, Tim-3, and TIGIT. These receptors, although they belong to the same class of receptors as PD-1 and CTLA-4, exhibit unique functions, especially at tissue sites where they regulate distinct aspects of immunity. Increased understanding of the specialized functions of these receptors will inform the rational application of therapies that target these receptors to the clinic.

摘要

共抑制受体,如细胞毒性T淋巴细胞相关抗原4(CTLA-4)和程序性死亡受体1(PD-1),在调节T细胞反应中发挥重要作用,并且已被证明是慢性疾病背景下的有效靶点,在这些疾病中,T细胞上组成性共抑制受体的表达会抑制效应T细胞反应。不幸的是,许多患者仍然对靶向CTLA-4和PD-1的疗法没有反应。正在临床试验中探索的下一波共抑制受体靶点包括淋巴细胞激活基因3(Lag-3)、T细胞免疫球蛋白黏蛋白3(Tim-3)和T细胞免疫受体Ig和ITIM结构域(TIGIT)。这些受体虽然与PD-1和CTLA-4属于同一类受体,但具有独特的功能,尤其是在调节免疫不同方面的组织部位。对这些受体特殊功能的进一步了解将为这些靶向受体的疗法在临床上的合理应用提供依据。

相似文献

1
Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation.
Immunity. 2016 May 17;44(5):989-1004. doi: 10.1016/j.immuni.2016.05.001.
2
Immune Co-inhibitory Receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT in Medullary Thyroid Cancers: A Large Cohort Study.
J Clin Endocrinol Metab. 2021 Jan 1;106(1):120-132. doi: 10.1210/clinem/dgaa701.
5
Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.
Gastroenterology. 2017 Oct;153(4):1107-1119.e10. doi: 10.1053/j.gastro.2017.06.017. Epub 2017 Jun 23.
6
TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
Immunol Rev. 2017 Mar;276(1):112-120. doi: 10.1111/imr.12518.
8
Immune Co-inhibitory Receptors CTLA-4, PD-1, TIGIT, LAG-3, and TIM-3 in Upper Tract Urothelial Carcinomas: A Large Cohort Study.
J Immunother. 2023 May 1;46(4):154-159. doi: 10.1097/CJI.0000000000000466. Epub 2023 Apr 5.
9
Blood Levels of Co-inhibitory-Receptors: A Biomarker of Disease Prognosis in Multiple Sclerosis.
Front Immunol. 2019 Apr 30;10:835. doi: 10.3389/fimmu.2019.00835. eCollection 2019.

引用本文的文献

1
Cytotoxic CD4⁺ T cells exhibit an immunosuppressive shift in checkpoint immunotherapy resistance in melanoma patients.
Cancer Immunol Immunother. 2025 Sep 4;74(9):297. doi: 10.1007/s00262-025-04145-6.
2
Engineering strategies of sequential drug delivery systems for combination tumor immunotherapy.
Acta Pharm Sin B. 2025 Aug;15(8):3951-3977. doi: 10.1016/j.apsb.2025.05.039. Epub 2025 Jun 6.
3
Chronic antigen stimulation in melanoma induces T cell exhaustion and limits efficacy of T cell bispecific therapies.
Oncoimmunology. 2025 Dec;14(1):2526444. doi: 10.1080/2162402X.2025.2526444. Epub 2025 Aug 26.
6
Unconventional Immunotherapies in Cancer: Opportunities and Challenges.
Pharmaceuticals (Basel). 2025 Aug 4;18(8):1154. doi: 10.3390/ph18081154.
7
Nanoparticles for Cancer Immunotherapy: Innovations and Challenges.
Pharmaceuticals (Basel). 2025 Jul 22;18(8):1086. doi: 10.3390/ph18081086.
8
Distinct Immunological Landscapes of HCMV-Specific T Cells in Bone Marrow and Peripheral Blood.
Pathogens. 2025 Jul 22;14(8):722. doi: 10.3390/pathogens14080722.
9
Aptamers Targeting Immune Checkpoints for Tumor Immunotherapy.
Pharmaceutics. 2025 Jul 22;17(8):948. doi: 10.3390/pharmaceutics17080948.

本文引用的文献

1
TIGIT predominantly regulates the immune response via regulatory T cells.
J Clin Invest. 2015 Nov 2;125(11):4053-62. doi: 10.1172/JCI81187. Epub 2015 Sep 28.
2
Combination cancer immunotherapy and new immunomodulatory targets.
Nat Rev Drug Discov. 2015 Aug;14(8):561-84. doi: 10.1038/nrd4591.
3
Molecular and cellular insights into T cell exhaustion.
Nat Rev Immunol. 2015 Aug;15(8):486-99. doi: 10.1038/nri3862.
4
Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226.
J Immunol. 2015 Jul 1;195(1):145-55. doi: 10.4049/jimmunol.1402381. Epub 2015 May 20.
5
Pembrolizumab versus Ipilimumab in Advanced Melanoma.
N Engl J Med. 2015 Jun 25;372(26):2521-32. doi: 10.1056/NEJMoa1503093. Epub 2015 Apr 19.
6
Interferon-β suppresses murine Th1 cell function in the absence of antigen-presenting cells.
PLoS One. 2015 Apr 17;10(4):e0124802. doi: 10.1371/journal.pone.0124802. eCollection 2015.
7
TIGIT and PD-1 impair tumor antigen-specific CD8⁺ T cells in melanoma patients.
J Clin Invest. 2015 May;125(5):2046-58. doi: 10.1172/JCI80445. Epub 2015 Apr 13.
8
Overcoming T cell exhaustion in infection and cancer.
Trends Immunol. 2015 Apr;36(4):265-76. doi: 10.1016/j.it.2015.02.008. Epub 2015 Mar 18.
9
Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack.
Immunity. 2015 Feb 17;42(2):344-355. doi: 10.1016/j.immuni.2015.01.010. Epub 2015 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验