Lau Matthew K, Keith Arthur R, Borrett Stuart R, Shuster Stephen M, Whitham Thomas G
Ecology. 2016 Mar;97(3):733-42.
Although genetics in a single species is known to impact whole communities, little is known about how genetic variation influences species interaction networks in complex ecosystems. Here, we examine the interactions in a community of arthropod species on replicated genotypes (clones) of a foundation tree species, Populus angustifolia James (narrowleaf cottonwood), in a long-term, common garden experiment using a bipartite "genotype-species" network perspective. We combine this empirical work with a simulation experiment designed to further investigate how variation among individual tree genotypes can impact network structure. Three findings emerged: (1) the empirical "genotype-species network" exhibited significant network structure with modularity being greater than the highly conservative null model; (2) as would be expected given a modular network structure, the empirical network displayed significant positive arthropod co-occurrence patterns; and (3) furthermore, the simulations of "genotype-species" networks displayed variation in network structure, with modularity in particular clearly increasing, as genotypic variation increased. These results support the conclusion that genetic variation in a single species contributes to the structure of ecological interaction networks, which could influence eco-ogical dynamics (e.g., assembly and stability) and evolution in a community context.
虽然已知单一物种的遗传学特征会影响整个群落,但对于遗传变异如何影响复杂生态系统中的物种相互作用网络,我们却知之甚少。在此,我们通过长期的同质园实验,从二分“基因型 - 物种”网络的角度,研究了节肢动物物种群落与基础树种窄叶杨(Populus angustifolia James)的复制基因型(克隆体)之间的相互作用。我们将这项实证研究与一个模拟实验相结合,该模拟实验旨在进一步探究单个树木基因型的变异如何影响网络结构。研究得出了三个结果:(1)实证“基因型 - 物种网络”呈现出显著的网络结构,其模块化程度高于高度保守的零模型;(2)鉴于模块化网络结构,实证网络呈现出显著的节肢动物共现正模式;(3)此外,“基因型 - 物种”网络的模拟结果显示,随着基因型变异的增加,网络结构出现变化,尤其是模块化程度明显增加。这些结果支持了这样的结论,即单一物种的遗传变异有助于生态相互作用网络的结构形成,这可能会在群落背景下影响生态动态(如群落构建和稳定性)以及进化。