KTH Royal Institute of Technology , School of Chemical Science and Engineering, Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden.
Chalmers University of Technology , Department of Materials and Manufacturing Technology, High Voltage Engineering, SE-412 96 Göteborg, Sweden.
ACS Appl Mater Interfaces. 2016 Jun 15;8(23):14824-35. doi: 10.1021/acsami.6b04188. Epub 2016 Jun 2.
The use of MgO nanoparticles in polyethylene for cable insulation has attracted considerable interest, although in humid media the surface regions of the nanoparticles undergo a conversion to a hydroxide phase. A facile method to obtain MgO nanoparticles with a large surface area and remarkable inertness to humidity is presented. The method involves (a) low temperature (400 °C) thermal decomposition of Mg(OH)2, (b) a silicone oxide coating to conceal the nanoparticles and prevent interparticle sintering upon exposure to high temperatures, and (c) heat treatment at 1000 °C. The formation of the hydroxide phase on these silicone oxide-coated MgO nanoparticles after extended exposure to humid air was assessed by thermogravimetry, infrared spectroscopy, and X-ray diffraction. The nanoparticles showed essentially no sign of any hydroxide phase compared to particles prepared by the conventional single-step thermal decomposition of Mg(OH)2. The moisture-resistant MgO nanoparticles showed improved dispersion and interfacial adhesion in the LDPE matrix with smaller nanosized particle clusters compared with conventionally prepared MgO. The addition of 1 wt % moisture-resistant MgO nanoparticles was sufficient to decrease the conductivity of polyethylene 30 times. The reduction in conductivity is discussed in terms of defect concentration on the surface of the moisture-resistant MgO nanoparticles at the polymer/nanoparticle interface.
将氧化镁纳米粒子用于聚乙烯电缆绝缘已引起了相当大的兴趣,尽管在潮湿的介质中,纳米粒子的表面区域会转化为氢氧化物相。本文提出了一种简便的方法来获得具有大比表面积和对湿度显著惰性的氧化镁纳米粒子。该方法包括:(a)在低温(400°C)下热分解 Mg(OH)2;(b)用氧化硅涂层覆盖纳米粒子,以防止在高温下暴露时颗粒间的烧结;(c)在 1000°C 下进行热处理。通过热重分析、红外光谱和 X 射线衍射评估了这些经过长时间暴露于潮湿空气中的氧化硅涂层氧化镁纳米粒子上形成的氢氧化物相。与通过传统的 Mg(OH)2 一步热分解制备的颗粒相比,这些纳米粒子几乎没有任何氢氧化物相的迹象。与常规制备的氧化镁相比,耐湿氧化镁纳米粒子在 LDPE 基体中具有更好的分散性和界面粘附性,纳米级颗粒簇更小。添加 1wt%的耐湿氧化镁纳米粒子足以使聚乙烯的电导率降低 30 倍。根据耐湿氧化镁纳米粒子在聚合物/纳米粒子界面处表面的缺陷浓度,讨论了电导率的降低。