Suppr超能文献

ECL:一种使用全数据库鉴定交联肽段的穷举搜索工具。

ECL: an exhaustive search tool for the identification of cross-linked peptides using whole database.

作者信息

Yu Fengchao, Li Ning, Yu Weichuan

机构信息

Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.

Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

BMC Bioinformatics. 2016 May 20;17(1):217. doi: 10.1186/s12859-016-1073-y.

Abstract

BACKGROUND

Chemical cross-linking combined with mass spectrometry (CX-MS) is a high-throughput approach to studying protein-protein interactions. The number of peptide-peptide combinations grows quadratically with respect to the number of proteins, resulting in a high computational complexity. Widely used methods including xQuest (Rinner et al., Nat Methods 5(4):315-8, 2008; Walzthoeni et al., Nat Methods 9(9):901-3, 2012), pLink (Yang et al., Nat Methods 9(9):904-6, 2012), ProteinProspector (Chu et al., Mol Cell Proteomics 9:25-31, 2010; Trnka et al., 13(2):420-34, 2014) and Kojak (Hoopmann et al., J Proteome Res 14(5):2190-198, 2015) avoid searching all peptide-peptide combinations by pre-selecting peptides with heuristic approaches. However, pre-selection procedures may cause missing findings. The most intuitive approach is searching all possible candidates. A tool that can exhaustively search a whole database without any heuristic pre-selection procedure is therefore desirable.

RESULTS

We have developed a cross-linked peptides identification tool named ECL. It can exhaustively search a whole database in a reasonable period of time without any heuristic pre-selection procedure. Tests showed that searching a database containing 5200 proteins took 7 h. ECL identified more non-redundant cross-linked peptides than xQuest, pLink, and ProteinProspector. Experiments showed that about 30 % of these additional identified peptides were not pre-selected by Kojak. We used protein crystal structures from the protein data bank to check the intra-protein cross-linked peptides. Most of the distances between cross-linking sites were smaller than 30 Å.

CONCLUSIONS

To the best of our knowledge, ECL is the first tool that can exhaustively search all candidates in cross-linked peptides identification. The experiments showed that ECL could identify more peptides than xQuest, pLink, and ProteinProspector. A further analysis indicated that some of the additional identified results were thanks to the exhaustive search.

摘要

背景

化学交联结合质谱分析(CX-MS)是一种研究蛋白质-蛋白质相互作用的高通量方法。肽-肽组合的数量相对于蛋白质数量呈二次方增长,导致计算复杂度很高。广泛使用的方法包括xQuest(Rinner等人,《自然方法》5(4):315 - 8,2008年;Walzthoeni等人,《自然方法》9(9):901 - 3,2012年)、pLink(Yang等人,《自然方法》9(9):904 - 6,2012年)、ProteinProspector(Chu等人,《分子细胞蛋白质组学》9:25 - 31,2010年;Trnka等人,13(2):420 - 34,2014年)和Kojak(Hoopmann等人,《蛋白质组研究杂志》14(5):2190 - 198,2015年),它们通过启发式方法预先选择肽段来避免搜索所有肽-肽组合。然而,预选择程序可能会导致遗漏发现。最直观的方法是搜索所有可能的候选者。因此,需要一种能够在不进行任何启发式预选择程序的情况下详尽搜索整个数据库的工具。

结果

我们开发了一种名为ECL的交联肽鉴定工具。它能够在合理的时间内详尽搜索整个数据库,而无需任何启发式预选择程序。测试表明,搜索一个包含5200种蛋白质的数据库需要7小时。ECL鉴定出的非冗余交联肽比xQuest、pLink和ProteinProspector更多。实验表明,这些额外鉴定出的肽中约30%未被Kojak预先选择。我们使用蛋白质数据库中的蛋白质晶体结构来检查蛋白质内的交联肽。交联位点之间的大多数距离小于30埃。

结论

据我们所知,ECL是第一种能够在交联肽鉴定中详尽搜索所有候选者的工具。实验表明,ECL能够比xQuest、pLink和ProteinProspector鉴定出更多的肽段。进一步分析表明,一些额外鉴定出的结果得益于详尽搜索。

相似文献

1
ECL: an exhaustive search tool for the identification of cross-linked peptides using whole database.
BMC Bioinformatics. 2016 May 20;17(1):217. doi: 10.1186/s12859-016-1073-y.
2
Exhaustively Identifying Cross-Linked Peptides with a Linear Computational Complexity.
J Proteome Res. 2017 Oct 6;16(10):3942-3952. doi: 10.1021/acs.jproteome.7b00338. Epub 2017 Sep 1.
4
A composite filter for low FDR of protein-protein interactions detected by in vivo cross-linking.
J Proteomics. 2021 Jan 6;230:103987. doi: 10.1016/j.jprot.2020.103987. Epub 2020 Sep 17.
5
Identification of cross-linked peptides from large sequence databases.
Nat Methods. 2008 Apr;5(4):315-8. doi: 10.1038/nmeth.1192. Epub 2008 Mar 9.
6
Using pLink to Analyze Cross-Linked Peptides.
Curr Protoc Bioinformatics. 2015 Mar 9;49:8.21.1-8.21.19. doi: 10.1002/0471250953.bi0821s49.
7
Xilmass: A New Approach toward the Identification of Cross-Linked Peptides.
Anal Chem. 2016 Oct 18;88(20):9949-9957. doi: 10.1021/acs.analchem.6b01585. Epub 2016 Sep 28.
8
Identification of Cross-linked Peptides Using Isotopomeric Cross-linkers.
J Am Soc Mass Spectrom. 2019 Sep;30(9):1643-1653. doi: 10.1007/s13361-019-02253-z. Epub 2019 Jun 5.
9
Exhaustive Cross-Linking Search with Protein Feedback.
J Proteome Res. 2023 Jan 6;22(1):101-113. doi: 10.1021/acs.jproteome.2c00500. Epub 2022 Dec 8.
10
ECL 3.0: a sensitive peptide identification tool for cross-linking mass spectrometry data analysis.
BMC Bioinformatics. 2023 Sep 20;24(1):351. doi: 10.1186/s12859-023-05473-z.

引用本文的文献

1
ECL 3.0: a sensitive peptide identification tool for cross-linking mass spectrometry data analysis.
BMC Bioinformatics. 2023 Sep 20;24(1):351. doi: 10.1186/s12859-023-05473-z.
2
The Vaccinia virion: Filling the gap between atomic and ultrastructure.
PLoS Pathog. 2019 Jan 7;15(1):e1007508. doi: 10.1371/journal.ppat.1007508. eCollection 2019 Jan.
3
Identification of MS-Cleavable and Noncleavable Chemically Cross-Linked Peptides with MetaMorpheus.
J Proteome Res. 2018 Jul 6;17(7):2370-2376. doi: 10.1021/acs.jproteome.8b00141. Epub 2018 Jun 11.
4
Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology.
Anal Chem. 2018 Jan 2;90(1):144-165. doi: 10.1021/acs.analchem.7b04431. Epub 2017 Nov 21.

本文引用的文献

1
Tandem Mass Spectrum Identification via Cascaded Search.
J Proteome Res. 2015 Aug 7;14(8):3027-38. doi: 10.1021/pr501173s. Epub 2015 Jun 30.
2
Kojak: efficient analysis of chemically cross-linked protein complexes.
J Proteome Res. 2015 May 1;14(5):2190-8. doi: 10.1021/pr501321h. Epub 2015 Apr 15.
3
Crossfinder-assisted mapping of protein crosslinks formed by site-specifically incorporated crosslinkers.
Bioinformatics. 2015 Jun 15;31(12):2043-5. doi: 10.1093/bioinformatics/btv083. Epub 2015 Feb 11.
4
A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells.
Mol Cell Proteomics. 2014 Dec;13(12):3533-43. doi: 10.1074/mcp.M114.042630. Epub 2014 Sep 24.
5
A mass spectrometry-based hybrid method for structural modeling of protein complexes.
Nat Methods. 2014 Apr;11(4):403-406. doi: 10.1038/nmeth.2841. Epub 2014 Feb 9.
6
Architecture of the large subunit of the mammalian mitochondrial ribosome.
Nature. 2014 Jan 23;505(7484):515-9. doi: 10.1038/nature12890. Epub 2013 Dec 22.
7
Matching cross-linked peptide spectra: only as good as the worse identification.
Mol Cell Proteomics. 2014 Feb;13(2):420-34. doi: 10.1074/mcp.M113.034009. Epub 2013 Dec 12.
8
Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1.
Cell. 2013 Sep 12;154(6):1220-31. doi: 10.1016/j.cell.2013.08.018.
10
Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry.
Science. 2012 Sep 14;337(6100):1348-52. doi: 10.1126/science.1221483.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验