Wang Qing Jun, Singh Abhay, Li Hong, Nedbal Ladislav, Sherman Louis A, Whitmarsh John
Center for Biophysics & Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Biochim Biophys Acta. 2012 May;1817(5):792-801. doi: 10.1016/j.bbabio.2012.01.004. Epub 2012 Jan 12.
Oxygenic photosynthesis in cyanobacteria, algae, and plants requires photosystem II (PSII) to extract electrons from H(2)O and depends on photosystem I (PSI) to reduce NADP(+). Here we demonstrate that mixotrophically-grown mutants of the cyanobacterium Synechocystis sp. PCC 6803 that lack PSI (ΔPSI) are capable of net light-induced O(2) evolution in vivo. The net light-induced O(2) evolution requires glucose and can be sustained for more than 30 min. Utilizing electron transport inhibitors and chlorophyll a fluorescence measurements, we show that in these mutants PSII is the source of the light-induced O(2) evolution, and that the plastoquinone pool is reduced by PSII and subsequently oxidized by an unidentified electron acceptor that does not involve the plastoquinol oxidase site of the cytochrome b(6)f complex. Moreover, both O(2) evolution and chlorophyll a fluorescence kinetics of the ΔPSI mutants are highly sensitive to KCN, indicating the involvement of a KCN-sensitive enzyme(s). Experiments using (14)C-labeled bicarbonate show that the ΔPSI mutants assimilate more CO(2) in the light compared to the dark. However, the rate of the light-minus-dark CO(2) assimilation accounts for just over half of the net light-induced O(2) evolution rate, indicating the involvement of unidentified terminal electron acceptors. Based on these results we suggest that O(2) evolution in ΔPSI cells can be sustained by an alternative electron transport pathway that results in CO(2) assimilation and that includes PSII, the platoquinone pool, and a KCN-sensitive enzyme.
蓝细菌、藻类和植物中的氧光合作用需要光系统II(PSII)从H₂O中提取电子,并依赖光系统I(PSI)来还原NADP⁺。在此,我们证明了集胞藻PCC 6803中缺乏PSI(ΔPSI)的混合营养生长突变体在体内能够进行净光诱导的O₂释放。净光诱导的O₂释放需要葡萄糖,并且可以持续超过30分钟。利用电子传递抑制剂和叶绿素a荧光测量,我们表明在这些突变体中,PSII是光诱导O₂释放的来源,并且质体醌池被PSII还原,随后被一种不涉及细胞色素b₆f复合物的质体醌氧化酶位点的未知电子受体氧化。此外,ΔPSI突变体的O₂释放和叶绿素a荧光动力学对KCN高度敏感,表明涉及一种对KCN敏感的酶。使用¹⁴C标记的碳酸氢盐进行的实验表明,与黑暗相比,ΔPSI突变体在光照下吸收更多的CO₂。然而,光减去暗的CO₂同化速率仅占净光诱导O₂释放速率的一半多一点,这表明存在未知的末端电子受体。基于这些结果,我们认为ΔPSI细胞中的O₂释放可以通过一种替代电子传递途径来维持,该途径导致CO₂同化,并且包括PSII、质体醌池和一种对KCN敏感的酶。