Domingo-Almenara Xavier, Perera Alexandre, Ramírez Noelia, Brezmes Jesus
Metabolomics Platform - IISPV, Department of Electrical and Automation Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Catalonia, Spain; Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
B2SLAB, Department d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
Comput Methods Programs Biomed. 2016 Jul;130:135-41. doi: 10.1016/j.cmpb.2016.03.007. Epub 2016 Mar 22.
Comprehensive gas chromatography-mass spectrometry (GC×GC-MS) provides a different perspective in metabolomics profiling of samples. However, algorithms for GC×GC-MS data processing are needed in order to automatically process the data and extract the purest information about the compounds appearing in complex biological samples. This study shows the capability of independent component analysis-orthogonal signal deconvolution (ICA-OSD), an algorithm based on blind source separation and distributed in an R package called osd, to extract the spectra of the compounds appearing in GC×GC-MS chromatograms in an automated manner. We studied the performance of ICA-OSD by the quantification of 38 metabolites through a set of 20 Jurkat cell samples analyzed by GC×GC-MS. The quantification by ICA-OSD was compared with a supervised quantification by selective ions, and most of the R(2) coefficients of determination were in good agreement (R(2)>0.90) while up to 24 cases exhibited an excellent linear relation (R(2)>0.95). We concluded that ICA-OSD can be used to resolve co-eluted compounds in GC×GC-MS.
全二维气相色谱-质谱联用(GC×GC-MS)在样品代谢组学分析中提供了一个不同的视角。然而,为了自动处理数据并从复杂生物样品中出现的化合物中提取最纯净的信息,需要用于GC×GC-MS数据处理的算法。本研究展示了独立成分分析-正交信号去卷积(ICA-OSD)的能力,这是一种基于盲源分离的算法,分布在一个名为osd的R包中,能够以自动化方式提取GC×GC-MS色谱图中出现的化合物的光谱。我们通过对一组20个经GC×GC-MS分析的Jurkat细胞样品中的38种代谢物进行定量,研究了ICA-OSD的性能。将ICA-OSD的定量结果与通过选择离子进行的有监督定量进行比较,大多数决定系数R(2)系数吻合良好(R(2)>0.90),同时多达24个案例呈现出极好的线性关系(R(2)>0.95)。我们得出结论,ICA-OSD可用于解析GC×GC-MS中共洗脱的化合物。