Suppr超能文献

ADAP-GC 3.2:用于高效解析气相色谱-高分辨率质谱代谢组学数据的图形化软件工具。

ADAP-GC 3.2: Graphical Software Tool for Efficient Spectral Deconvolution of Gas Chromatography-High-Resolution Mass Spectrometry Metabolomics Data.

机构信息

University of North Carolina at Charlotte , Charlotte, North Carolina 28223, United States.

University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States.

出版信息

J Proteome Res. 2018 Jan 5;17(1):470-478. doi: 10.1021/acs.jproteome.7b00633. Epub 2017 Nov 7.

Abstract

ADAP-GC is an automated computational workflow for extracting metabolite information from raw, untargeted gas chromatography-mass spectrometry metabolomics data. Deconvolution of coeluting analytes is a critical step in the workflow, and the underlying algorithm is able to extract fragmentation mass spectra of coeluting analytes with high accuracy. However, its latest version ADAP-GC 3.0 was not user-friendly. To make ADAP-GC easier to use, we have developed ADAP-GC 3.2 and describe here the improvements on three aspects. First, all of the algorithms in ADAP-GC 3.0 written in R have been replaced by their analogues in Java and incorporated into MZmine 2 to make the workflow user-friendly. Second, the clustering algorithm DBSCAN has replaced the original hierarchical clustering to allow faster spectral deconvolution. Finally, algorithms originally developed for constructing extracted ion chromatograms (EICs) and detecting EIC peaks from LC-MS data are incorporated into the ADAP-GC workflow, allowing the latter to process high mass resolution data. Performance of ADAP-GC 3.2 has been evaluated using unit mass resolution data from standard-mixture and urine samples. The identification and quantitation results were compared with those produced by ADAP-GC 3.0, AMDIS, AnalyzerPro, and ChromaTOF. Identification results for high mass resolution data derived from standard-mixture samples are presented as well.

摘要

ADAP-GC 是一个从原始、非靶向气相色谱-质谱代谢组学数据中提取代谢物信息的自动化计算工作流程。共流出分析物的解卷积是工作流程中的一个关键步骤,其底层算法能够以高精度提取共流出分析物的碎片质谱。然而,它的最新版本 ADAP-GC 3.0 并不易用。为了使 ADAP-GC 更易于使用,我们开发了 ADAP-GC 3.2,并在此描述了在三个方面的改进。首先,ADAP-GC 3.0 中用 R 编写的所有算法都已被替换为它们在 Java 中的类似物,并集成到 MZmine 2 中,以使用户友好。其次,聚类算法 DBSCAN 已取代原始的层次聚类,以允许更快的光谱解卷积。最后,原本用于构建提取离子色谱图(EIC)和从 LC-MS 数据中检测 EIC 峰的算法已被整合到 ADAP-GC 工作流程中,允许后者处理高质量分辨率数据。使用标准混合物和尿液样本的单位质量分辨率数据评估了 ADAP-GC 3.2 的性能。将鉴定和定量结果与 ADAP-GC 3.0、AMDIS、AnalyzerPro 和 ChromaTOF 产生的结果进行了比较。还展示了从标准混合物样本中得出的高质量分辨率数据的鉴定结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验