Soccodato Alice, d'Ovidio Francesco, Lévy Marina, Jahn Oliver, Follows Michael J, De Monte Silvia
Sorbonne Université (UPMC, Paris 6)/CNRS/UPMC/IRD/MNHN, LOCEAN-IPSL, Paris, France.
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, USA.
Mar Genomics. 2016 Oct;29:9-17. doi: 10.1016/j.margen.2016.04.015. Epub 2016 May 17.
In the open ocean, the observation and quantification of biodiversity patterns is challenging. Marine ecosystems are indeed largely composed by microbial planktonic communities whose niches are affected by highly dynamical physico-chemical conditions, and whose observation requires advanced methods for morphological and molecular classification. Optical remote sensing offers an appealing complement to these in-situ techniques. Global-scale coverage at high spatiotemporal resolution is however achieved at the cost of restrained information on the local assemblage. Here, we use a coupled physical and ecological model ocean simulation to explore one possible metrics for comparing measures performed on such different scales. We show that a large part of the local diversity of the virtual plankton ecosystem - corresponding to what accessible by genomic methods - can be inferred from crude, but spatially extended, information - as conveyed by remote sensing. Shannon diversity of the local community is indeed highly correlated to a 'seascape' index, which quantifies the surrounding spatial heterogeneity of the most abundant functional group. The error implied in drastically reducing the resolution of the plankton community is shown to be smaller in frontal regions as well as in regions of intermediate turbulent energy. On the spatial scale of hundreds of kms, patterns of virtual plankton diversity are thus largely sustained by mixing communities that occupy adjacent niches. We provide a proof of principle that in the open ocean information on spatial variability of communities can compensate for limited local knowledge, suggesting the possibility of integrating in-situ and satellite observations to monitor biodiversity distribution at the global scale.
在公海中,生物多样性模式的观测和量化具有挑战性。海洋生态系统实际上很大程度上由微生物浮游群落组成,其生态位受高度动态的物理化学条件影响,且对其进行观测需要先进的形态学和分子分类方法。光学遥感为这些原位技术提供了一种有吸引力的补充。然而,以高时空分辨率实现全球尺度覆盖是以牺牲关于局部群落的有限信息为代价的。在这里,我们使用一个物理和生态耦合的海洋模拟模型来探索一种可能的指标,用于比较在如此不同尺度上进行的测量。我们表明,虚拟浮游生态系统的很大一部分局部多样性——对应于基因组方法可获取的信息——可以从粗略但空间扩展的信息中推断出来,如遥感所传达的信息。局部群落的香农多样性确实与一个“海景”指数高度相关,该指数量化了最丰富功能组的周围空间异质性。在锋面区域以及中等湍动能区域,大幅降低浮游生物群落分辨率所带来的误差较小。在数百公里的空间尺度上,虚拟浮游生物多样性模式很大程度上由占据相邻生态位的混合群落维持。我们提供了一个原理证明,即在公海中,关于群落空间变异性的信息可以弥补有限的局部知识,这表明有可能整合原位观测和卫星观测来监测全球尺度的生物多样性分布。