Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P.R. China.
Nanoscale. 2016 Jun 2;8(22):11602-10. doi: 10.1039/c6nr02055k.
Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.
金属-半导体杂化纳米晶体由于其多功能性而受到广泛关注,这些功能使其在技术应用方面具有广泛的前景。利用低成本的非贵金属来构建新型的金属-半导体杂化纳米晶体对于它们的大规模应用具有重要意义。在本研究中,开发了一种简便的溶液法来合成具有可控形貌的 Cu-ZnO 杂化纳米晶体,包括纳米多足体、核壳纳米粒子、纳米金字塔和核壳纳米线。在合成策略中,原位形成的 Cu 纳米晶作为 ZnO 异质成核和生长的种子,在不同的反应条件下最终形成各种 Cu-ZnO 异质纳米结构。这些杂化纳米晶体具有明确且稳定的异质结构结。紫外-可见-近红外光谱揭示了 Cu 的形貌依赖性表面等离子体共振吸收和 ZnO 的带隙吸收。此外,我们通过将磁性金属 Ni 掺入预先合成的胶体 Cu 纳米晶中,构建了一种新型的 Cu@CuNi-ZnO 三元异质纳米结构。这种杂化纳米晶体在 ZnO 壳和 Cu 核之间具有磁性的 Cu-Ni 中间层,表现出铁磁/超顺磁特性,扩展了它们的功能。最后,在制备的非贵金属-ZnO 杂化纳米晶体中观察到增强的光催化活性。本研究不仅提供了一种经济的方法来制备高质量的形貌可控的 Cu-ZnO 杂化纳米晶体,以应用于光催化和光伏器件领域,而且还为设计具有多功能性的三元非贵金属-半导体杂化纳米晶体开辟了新的机会。