College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430062, China.
College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China.
Biosens Bioelectron. 2018 Jul 30;112:23-30. doi: 10.1016/j.bios.2018.04.029. Epub 2018 Apr 18.
In this study, a facile solution approach was developed for the synthesis of a series of core-shell structured Ag@CuO nanocrystals of various shapes including triangles, spheres, and cubes with well-defined stable heterojunctions. The electrooxidation of dopamine (DA), uric acid (UA), guanine (G), and adenine (A) using these hybrids revealed morphology-dependent sensing properties, with activities and accumulation ability following the order, triangular Ag@CuO > spherical Ag@CuO > cubic Ag@CuO. Further, we constructed a novel graphene oxide (GO) nanosheet-reinforced triangular Ag@CuO ternary hetero-nanostructure. Such a hybrid with a three-dimensional interconnected hierarchical architecture is suitable for catalysis, since it not only leads to improved interfacial electron transfer, but also readily exposes the highly catalytic Ag@CuO to the reactants. Therefore, more enhanced electrochemical activities were observed for the oxidation of DA, UA, G, and A. This study provides an efficient way to synthesize morphology-controlled Ag@CuO heterogeneous catalysts for the fabrication of potential biosensors, and also opens up attractive avenues in the design of multifunctional ternary noble metal-semiconductor-carbon hybrids.
在这项研究中,开发了一种简便的溶液法来合成一系列具有各种形状的核壳结构的 Ag@CuO 纳米晶体,包括三角形、球形和立方体,具有良好定义的稳定异质结。使用这些杂化物对多巴胺 (DA)、尿酸 (UA)、鸟嘌呤 (G) 和腺嘌呤 (A) 的电氧化揭示了形态依赖性的传感特性,活性和积累能力的顺序为,三角形 Ag@CuO > 球形 Ag@CuO > 立方 Ag@CuO。此外,我们构建了一种新型的氧化石墨烯 (GO) 纳米片增强的三角形 Ag@CuO 三元杂化异质纳米结构。这种具有三维互连分层结构的杂化物非常适合催化,因为它不仅导致界面电子转移得到改善,而且还容易使高催化活性的 Ag@CuO 暴露于反应物。因此,对于 DA、UA、G 和 A 的氧化,观察到了更高的电化学活性。本研究为合成形态可控的 Ag@CuO 异质催化剂提供了一种有效的方法,用于制造潜在的生物传感器,并为多功能三元贵金属-半导体-碳杂化物的设计开辟了有吸引力的途径。