Suppr超能文献

氟化镁电子选择性接触用于晶体硅太阳能电池。

Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells.

机构信息

Research School of Engineering, The Australian National University (ANU) , Canberra, Australian Capital Territory 0200, Australia.

Department of Electrical Engineering and Computer Sciences, University of California , Berkeley, California 94720, United States.

出版信息

ACS Appl Mater Interfaces. 2016 Jun 15;8(23):14671-7. doi: 10.1021/acsami.6b03599. Epub 2016 Jun 1.

Abstract

In this study, we present a novel application of thin magnesium fluoride films to form electron-selective contacts to n-type crystalline silicon (c-Si). This allows the demonstration of a 20.1%-efficient c-Si solar cell. The electron-selective contact is composed of deposited layers of amorphous silicon (∼6.5 nm), magnesium fluoride (∼1 nm), and aluminum (∼300 nm). X-ray photoelectron spectroscopy reveals a work function of 3.5 eV at the MgF2/Al interface, significantly lower than that of aluminum itself (∼4.2 eV), enabling an Ohmic contact between the aluminum electrode and n-type c-Si. The optimized contact structure exhibits a contact resistivity of ∼76 mΩ·cm(2), sufficiently low for a full-area contact to solar cells, together with a very low contact recombination current density of ∼10 fA/cm(2). We demonstrate that electrodes functionalized with thin magnesium fluoride films significantly improve the performance of silicon solar cells. The novel contacts can potentially be implemented also in organic optoelectronic devices, including photovoltaics, thin film transistors, or light emitting diodes.

摘要

在这项研究中,我们提出了一种将薄氟化镁薄膜应用于形成对 n 型晶体硅(c-Si)的电子选择性接触的新方法。这使得我们能够展示出 20.1%效率的 c-Si 太阳能电池。这种电子选择性接触由沉积的非晶硅(约 6.5nm)、氟化镁(约 1nm)和铝(约 300nm)组成。X 射线光电子能谱揭示了 MgF2/Al 界面处的 3.5eV 的功函数,显著低于铝本身的 4.2eV,从而实现了铝电极和 n 型 c-Si 之间的欧姆接触。优化后的接触结构表现出约 76mΩ·cm(2)的接触电阻率,对于全面积接触太阳能电池来说足够低,并且具有非常低的接触复合电流密度约为 10fA/cm(2)。我们证明了用薄氟化镁薄膜功能化的电极显著提高了硅太阳能电池的性能。这种新型接触也有可能应用于有机光电设备,包括光伏、薄膜晶体管或发光二极管。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验