Suppr超能文献

相似文献

1
The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn.
Virulence. 2016 Aug 17;7(6):649-59. doi: 10.1080/21505594.2016.1188236. Epub 2016 May 24.
2
4
Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism.
Eukaryot Cell. 2004 Dec;3(6):1391-7. doi: 10.1128/EC.3.6.1391-1397.2004.
6
Inhibition of ergosterol synthesis by novel antifungal compounds targeting C-14 reductase.
Med Mycol. 2010 Jun;48(4):613-21. doi: 10.3109/13693780903390208.
7
Two natural molecules preferentially inhibit azole-resistant Candida albicans with MDR1 hyperactivation.
Chin J Nat Med. 2019 Mar;17(3):209-217. doi: 10.1016/S1875-5364(19)30023-8.
8
Deletion of the Candida albicans TLO gene family results in alterations in membrane sterol composition and fluconazole tolerance.
PLoS One. 2024 Aug 9;19(8):e0308665. doi: 10.1371/journal.pone.0308665. eCollection 2024.
9
Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes.
PLoS Pathog. 2024 Jul 30;20(7):e1012389. doi: 10.1371/journal.ppat.1012389. eCollection 2024 Jul.
10
Trafficking through the late endosome significantly impacts Candida albicans tolerance of the azole antifungals.
Antimicrob Agents Chemother. 2015 Apr;59(4):2410-20. doi: 10.1128/AAC.04239-14. Epub 2015 Feb 9.

引用本文的文献

1
Osh2 mediates species resistance to miltefosine by regulating zymosterol accumulation.
Antimicrob Agents Chemother. 2025 Sep 3;69(9):e0042725. doi: 10.1128/aac.00427-25. Epub 2025 Jul 23.
2
Alpha-bisabolol inhibits yeast to hyphal form transition and biofilm development in : in vitro and in silico studies.
In Silico Pharmacol. 2025 Apr 1;13(1):53. doi: 10.1007/s40203-025-00335-3. eCollection 2025.
3
Exploring medium and long arm extensions of 1,2,4-triazole derivatives as 14α-demethylase (CYP51) inhibitors.
RSC Med Chem. 2025 Mar 12;16(5):2270-2280. doi: 10.1039/d4md00863d. eCollection 2025 May 22.
4
Blocking the shikimate pathway amplifies the impact of carvacrol on biofilm formation in .
Microbiol Spectr. 2025 Mar 4;13(3):e0275424. doi: 10.1128/spectrum.02754-24. Epub 2025 Feb 7.
5
Eicosapentaenoic acid as an antibiofilm agent disrupts mature biofilms of .
Biofilm. 2024 Dec 30;9:100251. doi: 10.1016/j.bioflm.2024.100251. eCollection 2025 Jun.
6
The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies.
Chem Biol Drug Des. 2025 Jan;105(1):e70045. doi: 10.1111/cbdd.70045.
7
Novel Isoxazole-Based Antifungal Drug Candidates.
Int J Mol Sci. 2024 Dec 19;25(24):13618. doi: 10.3390/ijms252413618.
10
Insights into the role of sterol metabolism in antifungal drug resistance: a mini-review.
Front Microbiol. 2024 Oct 11;15:1409085. doi: 10.3389/fmicb.2024.1409085. eCollection 2024.

本文引用的文献

1
An Antifungal Benzimidazole Derivative Inhibits Ergosterol Biosynthesis and Reveals Novel Sterols.
Antimicrob Agents Chemother. 2015 Oct;59(10):6296-307. doi: 10.1128/AAC.00640-15. Epub 2015 Jul 27.
4
Selected mechanisms of molecular resistance of Candida albicans to azole drugs.
Acta Biochim Pol. 2015;62(2):247-51. doi: 10.18388/abp.2014_940. Epub 2015 Apr 21.
5
Global analysis of fungal morphology exposes mechanisms of host cell escape.
Nat Commun. 2015 Mar 31;6:6741. doi: 10.1038/ncomms7741.
6
Mechanisms of azole resistance in Candida albicans clinical isolates from Shanghai, China.
Res Microbiol. 2015 Apr;166(3):153-61. doi: 10.1016/j.resmic.2015.02.009. Epub 2015 Mar 6.
7
Resistance to antifungals that target CYP51.
J Chem Biol. 2014 Aug 27;7(4):143-61. doi: 10.1007/s12154-014-0121-1. eCollection 2014 Oct.
9
Elucidating drug resistance in human fungal pathogens.
Future Microbiol. 2014;9(4):523-42. doi: 10.2217/fmb.14.18.
10
Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment.
Mycopathologia. 2014 Jun;177(5-6):223-40. doi: 10.1007/s11046-014-9749-1. Epub 2014 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验