Suppr超能文献

认知发展的分层贝叶斯模型。

Hierarchical Bayesian models of cognitive development.

作者信息

Glassen Thomas, Nitsch Verena

机构信息

Faculty of Aerospace Engineering, Human Factors Institute, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany.

出版信息

Biol Cybern. 2016 Jun;110(2-3):217-27. doi: 10.1007/s00422-016-0686-6. Epub 2016 May 24.

Abstract

This article provides an introductory overview of the state of research on Hierarchical Bayesian Modeling in cognitive development. First, a brief historical summary and a definition of hierarchies in Bayesian modeling are given. Subsequently, some model structures are described based on four examples in the literature. These are models for the development of the shape bias, for learning ontological kinds and causal schemata as well as for the categorization of objects. The Bayesian modeling approach is then compared with the connectionist and nativist modeling paradigms and considered in view of Marr's (1982) three description levels of information-processing mechanisms. In this context, psychologically plausible algorithms and ideas of their neural implementation are presented. In addition to criticism and limitations of the approach, research needs are identified.

摘要

本文提供了关于认知发展中分层贝叶斯建模研究现状的介绍性概述。首先,给出了贝叶斯建模中层次结构的简要历史总结和定义。随后,基于文献中的四个例子描述了一些模型结构。这些模型分别用于形状偏好的发展、本体类别和因果图式的学习以及物体的分类。然后将贝叶斯建模方法与联结主义和先天主义建模范式进行了比较,并从马尔(1982)提出的信息处理机制的三个描述层次的角度进行了考量。在此背景下,介绍了心理上合理的算法及其神经实现的思路。除了该方法的批评和局限性之外,还确定了研究需求。

相似文献

1
Hierarchical Bayesian models of cognitive development.
Biol Cybern. 2016 Jun;110(2-3):217-27. doi: 10.1007/s00422-016-0686-6. Epub 2016 May 24.
2
Learning overhypotheses with hierarchical Bayesian models.
Dev Sci. 2007 May;10(3):307-21. doi: 10.1111/j.1467-7687.2007.00585.x.
3
Bottom-up learning of explicit knowledge using a Bayesian algorithm and a new Hebbian learning rule.
Neural Netw. 2011 Apr;24(3):219-32. doi: 10.1016/j.neunet.2010.12.002. Epub 2010 Dec 16.
4
Bayesian models of child development.
Wiley Interdiscip Rev Cogn Sci. 2015 Mar-Apr;6(2):75-86. doi: 10.1002/wcs.1330. Epub 2014 Nov 28.
5
Testing adaptive toolbox models: a Bayesian hierarchical approach.
Psychol Rev. 2013 Jan;120(1):39-64. doi: 10.1037/a0030777. Epub 2012 Dec 3.
6
Bayesian networks, Bayesian learning and cognitive development.
Dev Sci. 2007 May;10(3):281-7. doi: 10.1111/j.1467-7687.2007.00584.x.
7
On the importance of avoiding shortcuts in applying cognitive models to hierarchical data.
Behav Res Methods. 2018 Aug;50(4):1614-1631. doi: 10.3758/s13428-018-1054-3.
8
A tutorial introduction to Bayesian models of cognitive development.
Cognition. 2011 Sep;120(3):302-21. doi: 10.1016/j.cognition.2010.11.015. Epub 2011 Jan 26.
9
The Bayesian revolution approaches psychological development.
Dev Sci. 2007 May;10(3):357-64. doi: 10.1111/j.1467-7687.2007.00588.x.
10
Interactive effects of explicit emergent structure: a major challenge for cognitive computational modeling.
Top Cogn Sci. 2015 Apr;7(2):206-16. doi: 10.1111/tops.12135. Epub 2015 Mar 31.

引用本文的文献

1
What is optimal in optimal inference?
Curr Opin Behav Sci. 2019 Oct;29:117-126. doi: 10.1016/j.cobeha.2019.07.008. Epub 2019 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验