Glassen Thomas, Nitsch Verena
Faculty of Aerospace Engineering, Human Factors Institute, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany.
Biol Cybern. 2016 Jun;110(2-3):217-27. doi: 10.1007/s00422-016-0686-6. Epub 2016 May 24.
This article provides an introductory overview of the state of research on Hierarchical Bayesian Modeling in cognitive development. First, a brief historical summary and a definition of hierarchies in Bayesian modeling are given. Subsequently, some model structures are described based on four examples in the literature. These are models for the development of the shape bias, for learning ontological kinds and causal schemata as well as for the categorization of objects. The Bayesian modeling approach is then compared with the connectionist and nativist modeling paradigms and considered in view of Marr's (1982) three description levels of information-processing mechanisms. In this context, psychologically plausible algorithms and ideas of their neural implementation are presented. In addition to criticism and limitations of the approach, research needs are identified.
本文提供了关于认知发展中分层贝叶斯建模研究现状的介绍性概述。首先,给出了贝叶斯建模中层次结构的简要历史总结和定义。随后,基于文献中的四个例子描述了一些模型结构。这些模型分别用于形状偏好的发展、本体类别和因果图式的学习以及物体的分类。然后将贝叶斯建模方法与联结主义和先天主义建模范式进行了比较,并从马尔(1982)提出的信息处理机制的三个描述层次的角度进行了考量。在此背景下,介绍了心理上合理的算法及其神经实现的思路。除了该方法的批评和局限性之外,还确定了研究需求。