Suppr超能文献

人体持续和连续模拟出血期间对体表升温和降温的血流动力学稳定性

Hemodynamic Stability to Surface Warming and Cooling During Sustained and Continuous Simulated Hemorrhage in Humans.

作者信息

Poh Paula Y S, Gagnon Daniel, Romero Steven A, Convertino Victor A, Adams-Huet Beverley, Crandall Craig G

机构信息

*Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital and UT Southwestern Medical Center, Dallas, Texas †Tactical Combat Casualty Care, U.S. Army Institute for Surgical Research, Fort Sam Houston, Texas ‡Departments of Clinical Sciences and Internal Medicine, UT Southwestern Medical Center, Dallas, Texas.

出版信息

Shock. 2016 Sep;46(3 Suppl 1):42-9. doi: 10.1097/SHK.0000000000000661.

Abstract

One in 10 deaths worldwide is caused by traumatic injury, and 30% to 40% of those trauma-related deaths are due to hemorrhage. Currently, warming a bleeding victim is the standard of care due to the adverse effects of combined hemorrhage and hypothermia on survival. We tested the hypothesis that heating is detrimental to the maintenance of arterial pressure and cerebral perfusion during hemorrhage, while cooling is beneficial to victims who are otherwise normothermic. Twenty-one men (31 ± 9 y) were examined under two separate protocols designed to produce central hypovolemia similar to hemorrhage. Following 15 min of supine rest, 10 min of 30 mm Hg of lower body negative pressure (LBNP) was applied. On separate randomized days, subjects were then exposed to skin surface cooling (COOL), warming (WARM), or remained thermoneutral (NEUT), while LBNP continued. Subjects remained in these thermal conditions for either 40 min of 30 mm Hg LBNP (N = 9), or underwent a continuous LBNP ramp until hemodynamic decompensation (N = 12). Arterial blood pressure during LBNP was dependent on the thermal perturbation as blood pressure was greater during COOL (P >0.001) relative to NEUT and WARM for both protocols. Middle cerebral artery blood velocity decreased (P <0.001) from baseline throughout sustained and continuous LBNP, but the magnitude of reduction did not differ between thermal conditions. Contrary to our hypothesis, WARM did not reduce cerebral blood velocity or LBNP tolerance relative to COOL and NEUT in normothermic individuals. While COOL increased blood pressure, cerebral perfusion and time to presyncope were not different relative to NEUT or WARM during sustained or continuous LBNP. Warming an otherwise normothermic hemorrhaging victim is not detrimental to hemodynamic stability, nor is this stability improved with cooling.

摘要

全球十分之一的死亡是由创伤性损伤导致的,其中30%至40%的创伤相关死亡是由出血引起的。目前,由于出血合并体温过低对生存有不利影响,给出血患者升温是护理标准。我们检验了这样一个假设:在出血期间加热不利于维持动脉血压和脑灌注,而对于体温正常的患者,降温则有益。21名男性(31±9岁)按照两个单独的方案接受检查,这两个方案旨在产生与出血相似的中心血容量减少。在仰卧休息15分钟后,施加10分钟30毫米汞柱的下体负压(LBNP)。在不同的随机日期,受试者随后分别接受皮肤表面冷却(COOL)、加热(WARM)或保持体温中性(NEUT),同时LBNP持续进行。受试者在这些热条件下保持40分钟的30毫米汞柱LBNP(N = 9),或经历连续的LBNP斜坡直至血流动力学失代偿(N = 12)。在两种方案中,LBNP期间的动脉血压都依赖于热扰动,因为相对于NEUT和WARM,COOL期间的血压更高(P>0.001)。在持续和连续的LBNP过程中,大脑中动脉血流速度从基线开始下降(P<0.001),但热条件之间下降的幅度没有差异。与我们的假设相反,在体温正常的个体中,相对于COOL和NEUT,WARM并没有降低脑血流速度或LBNP耐受性。虽然COOL增加了血压,但在持续或连续的LBNP期间,相对于NEUT或WARM,脑灌注和接近晕厥的时间没有差异。给原本体温正常的出血患者升温对血流动力学稳定性没有不利影响,降温也不会改善这种稳定性。

相似文献

2
Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans.
J Appl Physiol (1985). 2015 Sep 15;119(6):677-85. doi: 10.1152/japplphysiol.00127.2015. Epub 2015 Jul 2.
3
A comparison of protocols for simulating hemorrhage in humans: step versus ramp lower body negative pressure.
J Appl Physiol (1985). 2021 Feb 1;130(2):380-389. doi: 10.1152/japplphysiol.00230.2020. Epub 2020 Nov 19.
4
Effect of skin surface cooling on central venous pressure during orthostatic challenge.
Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2429-33. doi: 10.1152/ajpheart.00383.2005. Epub 2005 Jul 15.
5
The effect of oscillatory hemodynamics on the cardiovascular responses to simulated hemorrhage during isocapnia.
J Appl Physiol (1985). 2023 Dec 1;135(6):1312-1322. doi: 10.1152/japplphysiol.00241.2023. Epub 2023 Oct 26.
7
Face cooling increases blood pressure during central hypovolemia.
Am J Physiol Regul Integr Comp Physiol. 2017 Nov 1;313(5):R594-R600. doi: 10.1152/ajpregu.00253.2017. Epub 2017 Aug 30.
8
Facial fanning reduces heart rate but not tolerance to a simulated hemorrhagic challenge following exercise heat stress in young healthy humans.
Am J Physiol Regul Integr Comp Physiol. 2024 Mar 1;326(3):R210-R219. doi: 10.1152/ajpregu.00180.2023. Epub 2023 Dec 18.
9
The impact of acute central hypovolemia on cerebral hemodynamics: does sex matter?
J Appl Physiol (1985). 2021 Jun 1;130(6):1786-1797. doi: 10.1152/japplphysiol.00499.2020. Epub 2021 Apr 29.
10
Skin cooling aids cerebrovascular function more effectively under severe than moderate heat stress.
Eur J Appl Physiol. 2010 May;109(1):101-8. doi: 10.1007/s00421-009-1298-9. Epub 2009 Nov 28.

引用本文的文献

1
A comparison of protocols for simulating hemorrhage in humans: step versus ramp lower body negative pressure.
J Appl Physiol (1985). 2021 Feb 1;130(2):380-389. doi: 10.1152/japplphysiol.00230.2020. Epub 2020 Nov 19.

本文引用的文献

2
The effects of cold and lower body negative pressure on cardiovascular homeostasis.
Biomed Res Int. 2015;2015:728145. doi: 10.1155/2015/728145. Epub 2015 Mar 19.
3
Human cardiovascular responses to passive heat stress.
Compr Physiol. 2015 Jan;5(1):17-43. doi: 10.1002/cphy.c140015.
4
Normothermic central hypovolemia tolerance reflects hyperthermic tolerance.
Clin Auton Res. 2014 Jun;24(3):119-26. doi: 10.1007/s10286-014-0237-y. Epub 2014 Apr 4.
5
Validation of lower body negative pressure as an experimental model of hemorrhage.
J Appl Physiol (1985). 2014 Feb 15;116(4):406-15. doi: 10.1152/japplphysiol.00640.2013. Epub 2013 Dec 19.
6
Estimation of individual-specific progression to impending cardiovascular instability using arterial waveforms.
J Appl Physiol (1985). 2013 Oct 15;115(8):1196-202. doi: 10.1152/japplphysiol.00668.2013. Epub 2013 Aug 8.
7
Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges.
Eur J Appl Physiol. 2014 Mar;114(3):545-59. doi: 10.1007/s00421-013-2667-y. Epub 2013 Jun 5.
8
Transcranial Doppler ultrasound: technique and application.
Semin Neurol. 2012 Sep;32(4):411-20. doi: 10.1055/s-0032-1331812. Epub 2013 Jan 29.
9
Sweat loss during heat stress contributes to subsequent reductions in lower-body negative pressure tolerance.
Exp Physiol. 2013 Feb;98(2):473-80. doi: 10.1113/expphysiol.2012.068171. Epub 2012 Aug 7.
10
Assessment of cerebral autoregulation: the quandary of quantification.
Am J Physiol Heart Circ Physiol. 2012 Sep 15;303(6):H658-71. doi: 10.1152/ajpheart.00328.2012. Epub 2012 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验