Bierle Craig J, Anderholm Kaitlyn M, Wang Jian Ben, McVoy Michael A, Schleiss Mark R
Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota
Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota.
J Virol. 2016 Jul 11;90(15):6989-6998. doi: 10.1128/JVI.00139-16. Print 2016 Aug 1.
The cytomegaloviruses (CMVs) are among the most genetically complex mammalian viruses, with viral genomes that often exceed 230 kbp. Manipulation of cytomegalovirus genomes is largely performed using infectious bacterial artificial chromosomes (BACs), which necessitates the maintenance of the viral genome in Escherichia coli and successful reconstitution of virus from permissive cells after transfection of the BAC. Here we describe an alternative strategy for the mutagenesis of guinea pig cytomegalovirus that utilizes clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing to introduce targeted mutations to the viral genome. Transient transfection and drug selection were used to restrict lytic replication of guinea pig cytomegalovirus to cells that express Cas9 and virus-specific guide RNA. The result was highly efficient editing of the viral genome that introduced targeted insertion or deletion mutations to nonessential viral genes. Cotransfection of multiple virus-specific guide RNAs or a homology repair template was used for targeted, markerless deletions of viral sequence or to introduce exogenous sequence by homology-driven repair. As CRISPR/Cas9 mutagenesis occurs directly in infected cells, this methodology avoids selective pressures that may occur during propagation of the viral genome in bacteria and may facilitate genetic manipulation of low-passage or clinical CMV isolates.
The cytomegalovirus genome is complex, and viral adaptations to cell culture have complicated the study of infection in vivo Recombineering of viral bacterial artificial chromosomes enabled the study of recombinant cytomegaloviruses. Here we report the development of an alternative approach using CRISPR/Cas9-based mutagenesis in guinea pig cytomegalovirus, a small-animal model of congenital cytomegalovirus disease. CRISPR/Cas9 mutagenesis can introduce the same types of mutations to the viral genome as bacterial artificial chromosome recombineering but does so directly in virus-infected cells. CRISPR/Cas9 mutagenesis is not dependent on a bacterial intermediate, and defined viral mutants can be recovered after a limited number of viral genome replications, minimizing the risk of spontaneous mutation.
巨细胞病毒(CMV)是遗传上最为复杂的哺乳动物病毒之一,其病毒基因组通常超过230千碱基对。巨细胞病毒基因组的操作大多使用感染性细菌人工染色体(BAC)进行,这需要在大肠杆菌中维持病毒基因组,并在转染BAC后从允许性细胞中成功重建病毒。在此,我们描述了一种对豚鼠巨细胞病毒进行诱变的替代策略,该策略利用成簇规律间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)介导的基因组编辑,向病毒基因组引入靶向突变。通过瞬时转染和药物筛选,将豚鼠巨细胞病毒的裂解复制限制在表达Cas9和病毒特异性向导RNA的细胞中。结果是对病毒基因组进行了高效编辑,向非必需病毒基因引入了靶向插入或缺失突变。共转染多个病毒特异性向导RNA或同源修复模板用于病毒序列的靶向、无标记缺失,或通过同源驱动修复引入外源序列。由于CRISPR/Cas9诱变直接在感染细胞中发生,这种方法避免了病毒基因组在细菌中传播期间可能出现的选择压力,并且可能有助于对低代或临床CMV分离株进行基因操作。
巨细胞病毒基因组复杂,且病毒对细胞培养的适应性使体内感染研究变得复杂。病毒细菌人工染色体的重组工程使重组巨细胞病毒的研究成为可能。在此,我们报告了在豚鼠巨细胞病毒(先天性巨细胞病毒疾病的小动物模型)中使用基于CRISPR/Cas9诱变的替代方法的开发情况。CRISPR/Cas9诱变可向病毒基因组引入与细菌人工染色体重组工程相同类型的突变,但直接在病毒感染细胞中进行。CRISPR/Cas9诱变不依赖细菌中间体,并且在有限数量的病毒基因组复制后即可获得确定的病毒突变体,将自发突变的风险降至最低。