Feldman Hannah C, Tong Michael, Wang Likun, Meza-Acevedo Rosa, Gobillot Theodore A, Lebedev Ivan, Gliedt Micah J, Hari Sanjay B, Mitra Arinjay K, Backes Bradley J, Papa Feroz R, Seeliger Markus A, Maly Dustin J
Department of Chemistry, University of Washington , Seattle, Washington, United States.
Department of Pharmacological Sciences, Stony Brook University Medical School , Stony Brook, New York, United States.
ACS Chem Biol. 2016 Aug 19;11(8):2195-205. doi: 10.1021/acschembio.5b00940. Epub 2016 Jun 9.
The accumulation of unfolded proteins under endoplasmic reticulum (ER) stress leads to the activation of the multidomain protein sensor IRE1α as part of the unfolded protein response (UPR). Clustering of IRE1α lumenal domains in the presence of unfolded proteins promotes kinase trans-autophosphorylation in the cytosol and subsequent RNase domain activation. Interestingly, there is an allosteric relationship between the kinase and RNase domains of IRE1α, which allows ATP-competitive inhibitors to modulate the activity of the RNase domain. Here, we use kinase inhibitors to study how ATP-binding site conformation affects the activity of the RNase domain of IRE1α. We find that diverse ATP-competitive inhibitors of IRE1α promote dimerization and activation of RNase activity despite blocking kinase autophosphorylation. In contrast, a subset of ATP-competitive ligands, which we call KIRAs, allosterically inactivate the RNase domain through the kinase domain by stabilizing monomeric IRE1α. Further insight into how ATP-competitive inhibitors are able to divergently modulate the RNase domain through the kinase domain was gained by obtaining the first structure of apo human IRE1α in the RNase active back-to-back dimer conformation. Comparison of this structure with other existing structures of IRE1α and integration of our extensive structure activity relationship (SAR) data has led us to formulate a model to rationalize how ATP-binding site ligands are able to control the IRE1α oligomeric state and subsequent RNase domain activity.
内质网(ER)应激下未折叠蛋白的积累会导致多结构域蛋白传感器IRE1α激活,这是未折叠蛋白反应(UPR)的一部分。在未折叠蛋白存在的情况下,IRE1α腔结构域的聚集会促进胞质溶胶中的激酶自磷酸化以及随后的核糖核酸酶结构域激活。有趣的是,IRE1α的激酶结构域和核糖核酸酶结构域之间存在变构关系,这使得ATP竞争性抑制剂能够调节核糖核酸酶结构域的活性。在这里,我们使用激酶抑制剂来研究ATP结合位点构象如何影响IRE1α核糖核酸酶结构域的活性。我们发现,尽管IRE1α的多种ATP竞争性抑制剂会阻断激酶自磷酸化,但它们仍能促进核糖核酸酶活性的二聚化和激活。相比之下,我们称为KIRAs的一部分ATP竞争性配体通过稳定单体IRE1α,通过激酶结构域变构失活核糖核酸酶结构域。通过获得处于核糖核酸酶活性背对背二聚体构象的无apo人IRE1α的首个结构,我们进一步深入了解了ATP竞争性抑制剂如何通过激酶结构域不同地调节核糖核酸酶结构域。将该结构与IRE1α的其他现有结构进行比较,并整合我们广泛的构效关系(SAR)数据,使我们能够构建一个模型来解释ATP结合位点配体如何能够控制IRE1α的寡聚状态以及随后的核糖核酸酶结构域活性。