Perlman R, Bottaro D P, White M F, Kahn C R
Research Division, Joslin Diabetes Center, Brigham and Women's Hospital, Boston, Massachusetts 02215.
J Biol Chem. 1989 May 25;264(15):8946-50.
The structure of the insulin receptor was studied with polyclonal antibodies obtained from rabbits which were immunized with synthetic peptides having a sequence identity to three regions of the alpha-subunit and five regions of the beta-subunit. None of the alpha-subunit antibodies including alpha-Pep8 (residues 40-49 (Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petruzzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O.M., and Ramachandran, J. (1985) Nature 313, 756-761), alpha-Pep7 (12 amino acid C-terminal extension (Ebina, Y., Ellis, L., Jarnagin, K., Ederly, M., Graf, L., Clauser, E., Ou, J.-H., Masiar, F., Kan, Y.W., Goldfine, I.D., Roth, R.A., and Rutter, W.J. (1985) Cell 313, 747-758], or alpha-Pep6 (residues 1-7, 9) immunoprecipitated the human insulin receptor solubilized from IM-9 lymphocytes; however, alpha-Pep8 immunoprecipitated the dithiothreitol-reduced receptor. Antibodies prepared against the N terminus of the beta-subunit (alpha-Pep5, residues 780-790) and the ATP binding site (alpha-Pep3, residues 1013-1022) did not react with the intact receptor under any conditions; however, antibodies to the C terminus of the beta-subunit (alpha-Pep1, residues 1314-1324) and to the juxta-membrane region (alpha-Pep3, residues 952-962) immunoprecipitated the solubilized receptor in both its phosphorylated and nonphosphorylated forms. In contrast, the antibody reactive with the regulatory region of the beta-subunit which contains the major autophosphorylation sites (alpha-Pep2, residues 1143-1154) only precipitated the phosphorylated form. Thus the conformation of the extracellular domain of the receptor is rigid and stabilized by disulfide bonds, whereas several regions of the intracellular domain are accessible to antibodies and undergo conformational changes during autophosphorylation.
利用从兔子获得的多克隆抗体研究胰岛素受体的结构,这些兔子用与α亚基的三个区域和β亚基的五个区域具有序列同一性的合成肽进行免疫。包括α-Pep8(残基40-49(乌尔里希,A.,贝尔,J.R.,陈,E.Y.,埃雷拉,R.,彼得鲁泽利,L.M.,杜尔,T.J.,格雷,A.,库森斯,L.,廖,Y.-C.,津川,M.,梅森,A.,西伯尔格,P.H.,格伦费尔德,C.,罗森,O.M.,和拉马钱德兰,J.(1985年)《自然》313,756-761))、α-Pep7(12个氨基酸的C末端延伸(海老名,Y.,埃利斯,L.,贾纳金,K.,埃德利,M.,格拉夫,L.,克劳泽,E.,欧,J.-H.,马西亚尔,F.,菅,Y.W.,戈德菲内,I.D.,罗斯,R.A.,和鲁特,W.J.(1985年)《细胞》313,747-758))或α-Pep6(残基1-7,9)在内的α亚基抗体均未免疫沉淀从IM-9淋巴细胞中溶解的人胰岛素受体;然而,α-Pep8免疫沉淀了二硫苏糖醇还原的受体。针对β亚基N末端(α-Pep5,残基780-790)和ATP结合位点(α-Pep3,残基1013-1022)制备的抗体在任何条件下均不与完整受体反应;然而,针对β亚基C末端(α-Pep1,残基1314-1324)和近膜区域(α-Pep3,残基952-962)的抗体免疫沉淀了溶解的受体的磷酸化和非磷酸化形式。相比之下,与包含主要自身磷酸化位点的β亚基调节区域反应的抗体(α-Pep2,残基1143-1154)仅沉淀磷酸化形式。因此,受体细胞外结构域的构象是刚性的,并通过二硫键稳定,而细胞内结构域的几个区域可被抗体识别,并在自身磷酸化过程中发生构象变化。