Suppr超能文献

身体成分特征可预测肝细胞癌患者的总生存期。

Body Composition Features Predict Overall Survival in Patients With Hepatocellular Carcinoma.

作者信息

Singal Amit G, Zhang Peng, Waljee Akbar K, Ananthakrishnan Lakshmi, Parikh Neehar D, Sharma Pratima, Barman Pranab, Krishnamurthy Venkataramu, Wang Lu, Wang Stewart C, Su Grace L

机构信息

Department of Internal Medicine, UT Southwestern Medical Center and Parkland Health and Hospital System, Dallas, Texas, USA.

Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Clin Transl Gastroenterol. 2016 May 26;7(5):e172. doi: 10.1038/ctg.2016.31.

Abstract

OBJECTIVES

Existing prognostic models for patients with hepatocellular carcinoma (HCC) have limitations. Analytic morphomics, a novel process to measure body composition using computational image-processing algorithms, may offer further prognostic information. The aim of this study was to develop and validate a prognostic model for HCC patients using body composition features and objective clinical information.

METHODS

Using computed tomography scans from a cohort of HCC patients at the VA Ann Arbor Healthcare System between January 2006 and December 2013, we developed a prognostic model using analytic morphomics and routine clinical data based on multivariate Cox regression and regularization methods. We assessed model performance using C-statistics and validated predicted survival probabilities. We validated model performance in an external cohort of HCC patients from Parkland Hospital, a safety-net health system in Dallas County.

RESULTS

The derivation cohort consisted of 204 HCC patients (20.1% Barcelona Clinic Liver Cancer classification (BCLC) 0/A), and the validation cohort had 225 patients (22.2% BCLC 0/A). The analytic morphomics model had good prognostic accuracy in the derivation cohort (C-statistic 0.80, 95% confidence interval (CI) 0.71-0.89) and external validation cohort (C-statistic 0.75, 95% CI 0.68-0.82). The accuracy of the analytic morphomics model was significantly higher than that of TNM and BCLC staging systems in derivation (P<0.001 for both) and validation (P<0.001 for both) cohorts. For calibration, mean absolute errors in predicted 1-year survival probabilities were 5.3% (90% quantile of 7.5%) and 7.6% (90% quantile of 12.5%) in the derivation and validation cohorts, respectively.

CONCLUSION

Body composition features, combined with readily available clinical data, can provide valuable prognostic information for patients with newly diagnosed HCC.

摘要

目的

现有的肝细胞癌(HCC)患者预后模型存在局限性。分析形态学是一种使用计算图像处理算法测量身体成分的新方法,可能会提供更多的预后信息。本研究的目的是利用身体成分特征和客观临床信息,开发并验证一种HCC患者的预后模型。

方法

我们使用了2006年1月至2013年12月期间在VA安阿伯医疗系统的一组HCC患者的计算机断层扫描,基于多变量Cox回归和正则化方法,利用分析形态学和常规临床数据开发了一种预后模型。我们使用C统计量评估模型性能,并验证预测的生存概率。我们在达拉斯县的安全网医疗系统帕克兰医院的一组外部HCC患者队列中验证了模型性能。

结果

推导队列包括204例HCC患者(20.1%为巴塞罗那临床肝癌分类(BCLC)0/A期),验证队列有225例患者(22.2%为BCLC 0/A期)。分析形态学模型在推导队列(C统计量0.80,95%置信区间(CI)0.71 - 0.89)和外部验证队列(C统计量0.75,95%CI 0.68 - 0.82)中具有良好的预后准确性。在推导队列(两者P<0.001)和验证队列(两者P<0.001)中,分析形态学模型的准确性显著高于TNM和BCLC分期系统。在校准方面,推导队列和验证队列中预测1年生存概率的平均绝对误差分别为5.3%(90%分位数为7.5%)和7.6%(90%分位数为12.5%)。

结论

身体成分特征与易于获得的临床数据相结合,可以为新诊断的HCC患者提供有价值的预后信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验