Lashua Lauren P, Melvin Jeffrey A, Deslouches Berthony, Pilewski Joseph M, Montelaro Ronald C, Bomberger Jennifer M
Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
J Antimicrob Chemother. 2016 Aug;71(8):2200-7. doi: 10.1093/jac/dkw143. Epub 2016 May 26.
Chronic infections with the opportunistic pathogen Pseudomonas aeruginosa are responsible for the majority of the morbidity and mortality in patients with cystic fibrosis (CF). While P. aeruginosa infections may initially be treated successfully with standard antibiotics, chronic infections typically arise as bacteria transition to a biofilm mode of growth and acquire remarkable antimicrobial resistance. To address the critical need for novel antimicrobial therapeutics that can effectively suppress chronic bacterial infections in challenging physiological environments, such as the CF lung, we have rationally designed a de novo engineered cationic antimicrobial peptide, the 24-residue WLBU2, with broad-spectrum antibacterial activity for pan-drug-resistant P. aeruginosa in liquid culture. In the current study, we tested the hypothesis that WLBU2 also prevents P. aeruginosa biofilm growth.
Using abiotic and biotic biofilm assays, co-culturing P. aeruginosa with polarized human airway epithelial cells, we examined the ability of WLBU2 to prevent biofilm biogenesis alone and in combination with currently used antibiotics.
We observed a dose-dependent reduction in biofilm growth on an abiotic surface and in association with CF airway epithelial cells. WLBU2 prevented P. aeruginosa biofilm formation when co-cultured with mucus-producing primary human CF airway epithelial cells and using CF clinical isolates of P. aeruginosa, even at low pH and high salt conditions that mimic the CF airway. When used in combination, WLBU2 significantly increases killing by the commonly used antibiotics tobramycin, ciprofloxacin, ceftazidime and meropenem.
While other studies have demonstrated the ability of natural and synthetic antimicrobial peptides to prevent abiotic bacterial biofilm formation, the current studies for the first time demonstrate the effective peptide treatment of a biotic bacterial biofilm in a setting similar to the CF airway, and without negative effects on human airway epithelial cells, thus highlighting the unique potential of this engineered cationic antimicrobial peptide for treatment of human respiratory infections.
机会性病原体铜绿假单胞菌的慢性感染是囊性纤维化(CF)患者发病和死亡的主要原因。虽然铜绿假单胞菌感染最初可用标准抗生素成功治疗,但随着细菌转变为生物膜生长模式并获得显著的抗菌耐药性,慢性感染通常会出现。为满足对新型抗菌疗法的迫切需求,这种疗法能够在诸如CF肺部等具有挑战性的生理环境中有效抑制慢性细菌感染,我们合理设计了一种全新的工程化阳离子抗菌肽,即由24个氨基酸残基组成的WLBU2,它对液体培养中的泛耐药铜绿假单胞菌具有广谱抗菌活性。在当前研究中,我们测试了WLBU2也能阻止铜绿假单胞菌生物膜生长的假设。
使用非生物和生物生物膜检测方法,将铜绿假单胞菌与人极化气道上皮细胞共培养,我们研究了WLBU2单独以及与目前使用的抗生素联合使用时阻止生物膜形成的能力。
我们观察到在非生物表面以及与CF气道上皮细胞相关的生物膜生长呈剂量依赖性减少。当与产生黏液的原代人CF气道上皮细胞共培养并使用铜绿假单胞菌的CF临床分离株时,WLBU2可阻止铜绿假单胞菌生物膜形成,即使在模拟CF气道的低pH和高盐条件下也是如此。联合使用时,WLBU2可显著增强常用抗生素妥布霉素、环丙沙星、头孢他啶和美罗培南的杀菌效果。
虽然其他研究已证明天然和合成抗菌肽有阻止非生物细菌生物膜形成的能力,但当前研究首次证明了在类似于CF气道的环境中,该肽能有效治疗生物细菌生物膜,且对人气道上皮细胞无负面影响,从而突出了这种工程化阳离子抗菌肽在治疗人类呼吸道感染方面的独特潜力。