Suppr超能文献

工程化阳离子抗菌肽(eCAP)可防止铜绿假单胞菌在气道上皮细胞上形成生物膜。

Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells.

作者信息

Lashua Lauren P, Melvin Jeffrey A, Deslouches Berthony, Pilewski Joseph M, Montelaro Ronald C, Bomberger Jennifer M

机构信息

Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Antimicrob Chemother. 2016 Aug;71(8):2200-7. doi: 10.1093/jac/dkw143. Epub 2016 May 26.

Abstract

OBJECTIVES

Chronic infections with the opportunistic pathogen Pseudomonas aeruginosa are responsible for the majority of the morbidity and mortality in patients with cystic fibrosis (CF). While P. aeruginosa infections may initially be treated successfully with standard antibiotics, chronic infections typically arise as bacteria transition to a biofilm mode of growth and acquire remarkable antimicrobial resistance. To address the critical need for novel antimicrobial therapeutics that can effectively suppress chronic bacterial infections in challenging physiological environments, such as the CF lung, we have rationally designed a de novo engineered cationic antimicrobial peptide, the 24-residue WLBU2, with broad-spectrum antibacterial activity for pan-drug-resistant P. aeruginosa in liquid culture. In the current study, we tested the hypothesis that WLBU2 also prevents P. aeruginosa biofilm growth.

METHODS

Using abiotic and biotic biofilm assays, co-culturing P. aeruginosa with polarized human airway epithelial cells, we examined the ability of WLBU2 to prevent biofilm biogenesis alone and in combination with currently used antibiotics.

RESULTS

We observed a dose-dependent reduction in biofilm growth on an abiotic surface and in association with CF airway epithelial cells. WLBU2 prevented P. aeruginosa biofilm formation when co-cultured with mucus-producing primary human CF airway epithelial cells and using CF clinical isolates of P. aeruginosa, even at low pH and high salt conditions that mimic the CF airway. When used in combination, WLBU2 significantly increases killing by the commonly used antibiotics tobramycin, ciprofloxacin, ceftazidime and meropenem.

CONCLUSIONS

While other studies have demonstrated the ability of natural and synthetic antimicrobial peptides to prevent abiotic bacterial biofilm formation, the current studies for the first time demonstrate the effective peptide treatment of a biotic bacterial biofilm in a setting similar to the CF airway, and without negative effects on human airway epithelial cells, thus highlighting the unique potential of this engineered cationic antimicrobial peptide for treatment of human respiratory infections.

摘要

目的

机会性病原体铜绿假单胞菌的慢性感染是囊性纤维化(CF)患者发病和死亡的主要原因。虽然铜绿假单胞菌感染最初可用标准抗生素成功治疗,但随着细菌转变为生物膜生长模式并获得显著的抗菌耐药性,慢性感染通常会出现。为满足对新型抗菌疗法的迫切需求,这种疗法能够在诸如CF肺部等具有挑战性的生理环境中有效抑制慢性细菌感染,我们合理设计了一种全新的工程化阳离子抗菌肽,即由24个氨基酸残基组成的WLBU2,它对液体培养中的泛耐药铜绿假单胞菌具有广谱抗菌活性。在当前研究中,我们测试了WLBU2也能阻止铜绿假单胞菌生物膜生长的假设。

方法

使用非生物和生物生物膜检测方法,将铜绿假单胞菌与人极化气道上皮细胞共培养,我们研究了WLBU2单独以及与目前使用的抗生素联合使用时阻止生物膜形成的能力。

结果

我们观察到在非生物表面以及与CF气道上皮细胞相关的生物膜生长呈剂量依赖性减少。当与产生黏液的原代人CF气道上皮细胞共培养并使用铜绿假单胞菌的CF临床分离株时,WLBU2可阻止铜绿假单胞菌生物膜形成,即使在模拟CF气道的低pH和高盐条件下也是如此。联合使用时,WLBU2可显著增强常用抗生素妥布霉素、环丙沙星、头孢他啶和美罗培南的杀菌效果。

结论

虽然其他研究已证明天然和合成抗菌肽有阻止非生物细菌生物膜形成的能力,但当前研究首次证明了在类似于CF气道的环境中,该肽能有效治疗生物细菌生物膜,且对人气道上皮细胞无负面影响,从而突出了这种工程化阳离子抗菌肽在治疗人类呼吸道感染方面的独特潜力。

相似文献

1
Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells.
J Antimicrob Chemother. 2016 Aug;71(8):2200-7. doi: 10.1093/jac/dkw143. Epub 2016 May 26.
3
Dispersal of Epithelium-Associated Pseudomonas aeruginosa Biofilms.
mSphere. 2020 Jul 15;5(4):e00630-20. doi: 10.1128/mSphere.00630-20.
4
Activity of a novel antimicrobial peptide against Pseudomonas aeruginosa biofilms.
Sci Rep. 2018 Oct 3;8(1):14728. doi: 10.1038/s41598-018-33016-7.
5
Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia.
Clin Microbiol Infect. 2018 May;24(5):547.e1-547.e8. doi: 10.1016/j.cmi.2017.08.029. Epub 2017 Sep 4.
8
In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells.
Infect Immun. 2008 Apr;76(4):1423-33. doi: 10.1128/IAI.01373-07. Epub 2008 Jan 22.
10
Sodium nitrite blocks the activity of aminoglycosides against Pseudomonas aeruginosa biofilms.
Antimicrob Agents Chemother. 2015;59(6):3329-34. doi: 10.1128/AAC.00546-15. Epub 2015 Mar 23.

引用本文的文献

1
Wound repair and immune function in the infected CF lung: before and after highly effective modulator therapy.
Front Cell Infect Microbiol. 2025 Apr 28;15:1566495. doi: 10.3389/fcimb.2025.1566495. eCollection 2025.
3
Recreating chronic respiratory infections using physiologically relevant models.
Eur Respir Rev. 2024 Aug 14;33(173). doi: 10.1183/16000617.0062-2024. Print 2024 Jul.
5
Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections.
Adv Sci (Weinh). 2023 Apr;10(11):e2206602. doi: 10.1002/advs.202206602. Epub 2023 Feb 1.
6
Treatment of infectious biofilms: Challenges and strategies.
Front Microbiol. 2022 Aug 26;13:955286. doi: 10.3389/fmicb.2022.955286. eCollection 2022.
7
Antimicrobial Peptide Mechanism Studied by Scattering-Guided Molecular Dynamics Simulation.
J Phys Chem B. 2022 Sep 15;126(36):6922-6935. doi: 10.1021/acs.jpcb.2c03193. Epub 2022 Sep 6.
8
What Is New in the Anti- Clinical Development Pipeline Since the 2017 WHO Alert?
Front Cell Infect Microbiol. 2022 Jul 8;12:909731. doi: 10.3389/fcimb.2022.909731. eCollection 2022.
9
Evolved resistance to a novel cationic peptide antibiotic requires high mutation supply.
Evol Med Public Health. 2022 May 30;10(1):266-276. doi: 10.1093/emph/eoac022. eCollection 2022.
10
Antibiofilm peptides: overcoming biofilm-related treatment failure.
RSC Adv. 2021 Jan 13;11(5):2718-2728. doi: 10.1039/d0ra09739j. eCollection 2021 Jan 11.

本文引用的文献

1
Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria.
Biochim Biophys Acta. 2016 May;1858(5):1044-60. doi: 10.1016/j.bbamem.2015.10.013. Epub 2015 Oct 23.
4
Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to β-lactam antibiotics.
Antimicrob Agents Chemother. 2015 Jul;59(7):3906-12. doi: 10.1128/AAC.00092-15. Epub 2015 Apr 20.
5
Sodium nitrite blocks the activity of aminoglycosides against Pseudomonas aeruginosa biofilms.
Antimicrob Agents Chemother. 2015;59(6):3329-34. doi: 10.1128/AAC.00546-15. Epub 2015 Mar 23.
6
In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms.
Antimicrob Agents Chemother. 2015 Mar;59(3):1751-4. doi: 10.1128/AAC.04773-14. Epub 2015 Jan 12.
7
pH modulates the activity and synergism of the airway surface liquid antimicrobials β-defensin-3 and LL-37.
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18703-8. doi: 10.1073/pnas.1422091112. Epub 2014 Dec 15.
8
Engineered cationic antimicrobial peptides to overcome multidrug resistance by ESKAPE pathogens.
Antimicrob Agents Chemother. 2015 Feb;59(2):1329-33. doi: 10.1128/AAC.03937-14. Epub 2014 Nov 24.
9
Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells.
Free Radic Biol Med. 2014 Dec;77:307-16. doi: 10.1016/j.freeradbiomed.2014.08.011. Epub 2014 Sep 16.
10
A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms.
Antimicrob Agents Chemother. 2014 Sep;58(9):5363-71. doi: 10.1128/AAC.03163-14. Epub 2014 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验