Suppr超能文献

通过束状光纤耦合显微镜对生物发光报告基因小鼠的多个器官进行体内生物发光和反射成像。

In vivo bioluminescence and reflectance imaging of multiple organs in bioluminescence reporter mice by bundled-fiber-coupled microscopy.

作者信息

Ando Yoriko, Sakurai Takashi, Koida Kowa, Tei Hajime, Hida Akiko, Nakao Kazuki, Natsume Mistuo, Numano Rika

机构信息

Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.

Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan; Juntendo University, Bunkyo-ku, Tokyo, 113-8421, Japan.

出版信息

Biomed Opt Express. 2016 Feb 23;7(3):963-78. doi: 10.1364/BOE.7.000963. eCollection 2016 Mar 1.

Abstract

Bioluminescence imaging (BLI) is used in biomedical research to monitor biological processes within living organisms. Recently, fiber bundles with high transmittance and density have been developed to detect low light with high resolution. Therefore, we have developed a bundled-fiber-coupled microscope with a highly sensitive cooled-CCD camera that enables the BLI of organs within the mouse body. This is the first report of in vivo BLI of the brain and multiple organs in luciferase-reporter mice using bundled-fiber optics. With reflectance imaging, the structures of blood vessels and organs can be seen clearly with light illumination, and it allowed identification of the structural details of bioluminescence images. This technique can also be applied to clinical diagnostics in a low invasive manner.

摘要

生物发光成像(BLI)用于生物医学研究,以监测活体内的生物过程。最近,已开发出具有高透光率和密度的光纤束,用于高分辨率检测弱光。因此,我们开发了一种带有高灵敏度冷却电荷耦合器件(CCD)相机的光纤耦合显微镜,可对小鼠体内的器官进行生物发光成像。这是首次使用光纤束对荧光素酶报告基因小鼠的大脑和多个器官进行体内生物发光成像的报告。通过反射成像,在光照下可以清晰地看到血管和器官的结构,并且可以识别生物发光图像的结构细节。该技术还可以以低侵入性方式应用于临床诊断。

相似文献

1
In vivo bioluminescence and reflectance imaging of multiple organs in bioluminescence reporter mice by bundled-fiber-coupled microscopy.
Biomed Opt Express. 2016 Feb 23;7(3):963-78. doi: 10.1364/BOE.7.000963. eCollection 2016 Mar 1.
3
A bright future for bioluminescent imaging in viral research.
Future Virol. 2015;10(2):169-183. doi: 10.2217/fvl.14.96.
5
Quantitative bioluminescence imaging of mouse tumor models.
Cold Spring Harb Protoc. 2015 Jan 5;2015(1):pdb.prot078261. doi: 10.1101/pdb.prot078261.
6
8
Bioluminescence: imaging modality for in vitro and in vivo gene expression.
Methods Mol Biol. 2008;477:383-94. doi: 10.1007/978-1-60327-517-0_29.
9
Red-Shifted Firefly Luciferase Optimized for Bioluminescence Imaging.
Front Microbiol. 2017 Aug 3;8:1478. doi: 10.3389/fmicb.2017.01478. eCollection 2017.
10
A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging.
Eur J Nucl Med Mol Imaging. 2004 May;31(5):740-51. doi: 10.1007/s00259-003-1441-5. Epub 2004 Mar 11.

引用本文的文献

1
Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles.
Int J Nanomedicine. 2022 May 13;17:2139-2163. doi: 10.2147/IJN.S355007. eCollection 2022.
2
Nanoscale-tipped wire array injections transfer DNA directly into brain cells ex vivo and in vivo.
FEBS Open Bio. 2022 Apr;12(4):835-851. doi: 10.1002/2211-5463.13377. Epub 2022 Mar 15.

本文引用的文献

1
Recent progress in luminescent proteins development.
Curr Opin Chem Biol. 2015 Aug;27:46-51. doi: 10.1016/j.cbpa.2015.05.029. Epub 2015 Jun 19.
2
Review of diverse optical fibers used in biomedical research and clinical practice.
J Biomed Opt. 2014 Aug;19(8):080902. doi: 10.1117/1.JBO.19.8.080902.
3
Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo.
Curr Opin Chem Biol. 2014 Aug;21:112-20. doi: 10.1016/j.cbpa.2014.07.003. Epub 2014 Aug 1.
4
Pulse oximetry: fundamentals and technology update.
Med Devices (Auckl). 2014 Jul 8;7:231-9. doi: 10.2147/MDER.S47319. eCollection 2014.
5
Color reflectance fiber bundle endomicroscopy without back-reflections.
J Biomed Opt. 2014 Mar;19(3):30501. doi: 10.1117/1.JBO.19.3.030501.
7
Fiber bundle endocytoscopy.
Biomed Opt Express. 2013 Nov 11;4(12):2781-94. doi: 10.1364/BOE.4.002781. eCollection 2013.
8
Luminescent proteins for high-speed single-cell and whole-body imaging.
Nat Commun. 2012;3:1262. doi: 10.1038/ncomms2248.
9
Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.
Eur J Neurosci. 2012 Sep;36(6):2722-32. doi: 10.1111/j.1460-9568.2012.08191.x. Epub 2012 Jul 11.
10
In vivo monitoring of peripheral circadian clocks in the mouse.
Curr Biol. 2012 Jun 5;22(11):1029-34. doi: 10.1016/j.cub.2012.04.009. Epub 2012 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验