Laumen Geneviève, Ferber Alexander T, Klump Georg M, Tollin Daniel J
Cluster of Excellence Hearing4all, Animal Physiology and Behavior Group, Department for Neuroscience, School of Medicine and Health Sciences, Oldenburg University, 26111 Oldenburg, Germany.
Department of Physiology and Biophysics, School of Medicine, University of Colorado, Aurora, Colorado 80045, USA.
Ear Hear. 2016 Sep-Oct;37(5):e276-e290. doi: 10.1097/AUD.0000000000000301.
The auditory brainstem response (ABR) is a sound-evoked noninvasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, the authors discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. The authors review how interaural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized.
听觉脑干反应(ABR)是一种通过声音诱发的、非侵入性测量的电位,代表听觉脑干和中脑神经元活动的总和。ABR的峰值幅度和潜伏期在人类和动物听觉研究以及临床筛查中被广泛应用。ABR的双耳交互成分(BIC)代表单耳ABR总和与双耳刺激获得的ABR之间的差异。BIC由一系列不同的波组成,其中最大的波(DN1)已被用于评估正常听力和听力受损听众的双耳听力。基于动物和人类研究的数据,作者讨论了BIC(特别是DN1)可能的解剖学和生理学基础。评估了电极放置和刺激特征对双耳诱发ABR的影响。作者回顾了双耳时间和强度差异如何影响BIC,并通过分析这些相关性,得出关于BIC产生机制的结论。最后,总结了BIC在临床诊断中的实用性。