Giessen Tobias W
Department of Systems Biology, Harvard Medical School and Wyss Institute for Biologically Inspired Engineering, Harvard University, 200 Longwood Ave, Boston, MA 02115, USA.
Curr Opin Chem Biol. 2016 Oct;34:1-10. doi: 10.1016/j.cbpa.2016.05.013. Epub 2016 May 25.
Compartmentalization is one of the defining features of life. Cells use protein compartments to exert spatial control over their metabolism, store nutrients and create unique microenvironments needed for essential physiological processes. Encapsulins are a recently discovered class of protein nanocompartments found in bacteria and archaea that naturally encapsulate cargo proteins. A short C-terminal targeting sequence directs the highly specific encapsulation process in vivo. Here, I will initially discuss the properties, diversity and putative function of encapsulins. The unique characteristics and potential uses of the self-sorting cargo-packaging process found in encapsulin systems will then be highlighted. Examples for the application of encapsulins as cell-specific optical nanoprobes and targeted therapeutic delivery systems will be discussed with an emphasis on the ability to integrate multiple functionalities within a single nanodevice. By fusing targeting sequences to non-native proteins, encapsulins can also be used as specific nanocontainers and enzymatic nanoreactors in vivo. I will end by briefly discussing future avenues for encapsulin research related to both basic microbial metabolism and applications in biomedicine, catalysis and materials science.
区室化是生命的决定性特征之一。细胞利用蛋白质区室对其新陈代谢进行空间控制,储存营养物质,并创造基本生理过程所需的独特微环境。包封蛋白是最近在细菌和古细菌中发现的一类蛋白质纳米区室,可自然包裹货物蛋白。一个短的C末端靶向序列在体内引导高度特异性的包裹过程。在这里,我将首先讨论包封蛋白的性质、多样性和假定功能。然后将重点介绍包封蛋白系统中发现的自分类货物包装过程的独特特性和潜在用途。将讨论包封蛋白作为细胞特异性光学纳米探针和靶向治疗递送系统的应用实例,重点是在单个纳米装置中整合多种功能的能力。通过将靶向序列与非天然蛋白质融合,包封蛋白还可以在体内用作特定的纳米容器和酶促纳米反应器。最后,我将简要讨论包封蛋白研究在基础微生物代谢以及生物医学、催化和材料科学应用方面的未来发展方向。