文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Engineering customized nanovaccines for enhanced cancer immunotherapy.

作者信息

Guo Jinyu, Liu Changhua, Qi Zhaoyang, Qiu Ting, Zhang Jin, Yang Huanghao

机构信息

Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China.

College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China.

出版信息

Bioact Mater. 2024 Mar 10;36:330-357. doi: 10.1016/j.bioactmat.2024.02.028. eCollection 2024 Jun.


DOI:10.1016/j.bioactmat.2024.02.028
PMID:38496036
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10940734/
Abstract

Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/b046049efcf7/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/d1c0e648121c/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/8a3863669829/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/99c03fa9e075/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/ae254a679e8a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/382ff2882607/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/60881411a6c2/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/d4d6641cb271/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/44f6ef2024dd/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/886cfd3c10f4/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/b046049efcf7/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/d1c0e648121c/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/8a3863669829/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/99c03fa9e075/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/ae254a679e8a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/382ff2882607/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/60881411a6c2/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/d4d6641cb271/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/44f6ef2024dd/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/886cfd3c10f4/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7489/10940734/b046049efcf7/gr8.jpg

相似文献

[1]
Engineering customized nanovaccines for enhanced cancer immunotherapy.

Bioact Mater. 2024-3-10

[2]
Lymph node-targeting nanovaccines for cancer immunotherapy.

J Control Release. 2022-11

[3]
Glucosylated Nanovaccines for Dendritic Cell-Targeted Antigen Delivery and Amplified Cancer Immunotherapy.

ACS Nano. 2024-9-17

[4]
Genetically Engineered Cytomembrane Nanovaccines for Cancer Immunotherapy.

Adv Healthc Mater. 2024-5

[5]
Self-adjuvanting cancer nanovaccines.

J Nanobiotechnology. 2022-7-26

[6]
Nanovaccines: Immunogenic tumor antigens, targeted delivery, and combination therapy to enhance cancer immunotherapy.

Drug Dev Res. 2024-8

[7]
Targeting lymph node delivery with nanovaccines for cancer immunotherapy: recent advances and future directions.

J Nanobiotechnology. 2023-7-7

[8]
Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance.

Drug Resist Updat. 2024-7

[9]
Monophosphoryl lipid A-assembled nanovaccines enhance tumor immunotherapy.

Acta Biomater. 2023-11

[10]
Dual-Targeted Self-Adjuvant Heterocyclic Lipidoid@Polyester Hybrid Nanovaccines for Boosting Cancer Immunotherapy.

ACS Nano. 2024-6-18

引用本文的文献

[1]
Biomaterials nanoplatform-based tumor vaccines for immunotherapy.

Bioact Mater. 2025-6-30

[2]
Thermoresistant flagellin-adjuvanted cancer vaccine combined with photothermal therapy synergizes with anti-PD-1 treatment.

J Immunother Cancer. 2025-3-21

[3]
Nanovaccines empowering CD8 T cells: a precision strategy to enhance cancer immunotherapy.

Theranostics. 2025-2-10

[4]
Invasion and metastasis in cancer: molecular insights and therapeutic targets.

Signal Transduct Target Ther. 2025-2-21

[5]
Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges.

Mol Cancer. 2025-1-18

[6]
Nanotechnology and nanobots unleashed: pioneering a new era in gynecological cancer management - a comprehensive review.

Cancer Chemother Pharmacol. 2025-1-4

[7]
Advancements in Engineering Planar Model Cell Membranes: Current Techniques, Applications, and Future Perspectives.

Nanomaterials (Basel). 2024-9-13

本文引用的文献

[1]
Controlled Lipid Self-Assembly for Scalable Manufacturing of Next-Generation Immune Stimulating Complexes.

Chem Eng J. 2023-5-15

[2]
A Twindrive Precise Delivery System of Platelet-Neutrophil Hybrid Membrane Regulates Macrophage Combined with CD47 Blocking for Postoperative Immunotherapy.

ACS Nano. 2024-2-13

[3]
Durable and enhanced immunity against SARS-CoV-2 elicited by manganese nanoadjuvant formulated subunit vaccine.

Signal Transduct Target Ther. 2023-12-16

[4]
BCG vaccination stimulates integrated organ immunity by feedback of the adaptive immune response to imprint prolonged innate antiviral resistance.

Nat Immunol. 2024-1

[5]
Light-Assisted "Nano-Neutrophils" with High Drug Loading for Targeted Cancer Therapy.

Int J Nanomedicine. 2023

[6]
Tissue-resident B cells orchestrate macrophage polarisation and function.

Nat Commun. 2023-11-4

[7]
Chemotherapy-Induced Neoantigen Nanovaccines Enhance Checkpoint Blockade Cancer Immunotherapy.

ACS Nano. 2023-10-10

[8]
Chitosan-based nano-micelles for potential anti-tumor immunotherapy: Synergistic effect of cGAS-STING signaling pathway activation and tumor antigen absorption.

Carbohydr Polym. 2023-12-1

[9]
A Booster for Radiofrequency Ablation: Advanced Adjuvant Therapy via Nanovaccine Synergized with Anti-programmed Death Ligand 1 Immunotherapy for Systemically Constraining Hepatocellular Carcinoma.

ACS Nano. 2023-10-10

[10]
Cancer Cell Membrane Nanodiscs for Antitumor Vaccination.

Nano Lett. 2023-9-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索