Gómez-Barrera Sac Nicté, Delgado-Tapia Willy Ángel, Hernández-Gutiérrez Aquetzali Estefanía, Cayetano-Cruz Maribel, Méndez Carmen, Bustos-Jaimes Ismael
Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX, Mexico 04510, Mexico.
Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX, Mexico 04510, Mexico.
ACS Omega. 2025 Feb 12;10(7):7142-7152. doi: 10.1021/acsomega.4c10285. eCollection 2025 Feb 25.
Encapsulin nanocompartments (ENCs), or simply encapsulins, are a novel type of protein nanocage found in bacteria and archaea. The complete encapsulin systems include protein cargoes involved in specific metabolic tasks. Cargoes are selectively encapsulated due to the presence of a specific cargo-loading peptide (CLP). However, heterologous proteins fused to the CLP have also been successfully encapsulated, making encapsulins a very promising system for protein-carrying and delivery. Nevertheless, for precise cell or tissue delivery, encapsulins require the addition of tagging peptides or proteins. In this study, the external surface of the ENC (MxENC) was analyzed and modified to carry the bioorthogonal conjugation peptide (SpyTag) to further decorate the MxENCs with any targeting protein previously fused to the SpyTag orthogonal pair, the SpyCatcher protein. The structural analysis of MxENC led to the selection of the surface loop 155-159 and the C-terminus of the encapsulin shell protein (EncA) for the genetic fusion of the SpyTag peptide. The engineered EncA forms retained the competence for self-assembly into ENCs. To provide cellular specificity, the PreS1 hepatocyte-targeting peptide, genetically fused to the SpyCatcher protein, was successfully conjugated to both engineered versions of the MxENC. The modified nanocompartments underwent comprehensive characterization for stability, cargo loading, cellular uptake, and cargo release in HepG2 cells, demonstrating their potential as protein-delivery vehicles. These results provide valuable insights into the design and customization of nanocompartments, opening up possibilities for improved drug delivery applications in biotechnology and nanomedicine.
封装蛋白纳米隔室(ENCs),或简称为封装蛋白,是在细菌和古细菌中发现的一种新型蛋白质纳米笼。完整的封装蛋白系统包括参与特定代谢任务的蛋白质货物。由于存在特定的货物装载肽(CLP),货物被选择性封装。然而,与CLP融合的异源蛋白质也已成功封装,这使得封装蛋白成为一种非常有前景的蛋白质携带和递送系统。尽管如此,为了实现精确的细胞或组织递送,封装蛋白需要添加标记肽或蛋白质。在本研究中,对ENCs(MxENCs)的外表面进行了分析和修饰,以携带生物正交共轭肽(SpyTag),从而用先前与SpyTag正交对SpyCatcher蛋白融合的任何靶向蛋白进一步修饰MxENCs。MxENC的结构分析导致选择表面环155 - 159和封装蛋白外壳蛋白(EncA)的C末端用于SpyTag肽的基因融合。工程化的EncA形式保留了自组装成ENCs的能力。为了提供细胞特异性,与SpyCatcher蛋白基因融合的前S1肝细胞靶向肽成功地与MxENC的两个工程版本共轭。对修饰后的纳米隔室进行了稳定性、货物装载、细胞摄取和在HepG2细胞中的货物释放的全面表征,证明了它们作为蛋白质递送载体的潜力。这些结果为纳米隔室的设计和定制提供了有价值的见解,为生物技术和纳米医学中改进的药物递送应用开辟了可能性。