Zhang Yinbo, Baranovskiy Andrey G, Tahirov Emin T, Tahirov Tahir H, Pavlov Youri I
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States.
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States.
DNA Repair (Amst). 2016 Jul;43:24-33. doi: 10.1016/j.dnarep.2016.05.017. Epub 2016 May 12.
DNA polymerases (pols) are sophisticated protein machines operating in the replication, repair and recombination of genetic material in the complex environment of the cell. DNA pol reactions require at least two divalent metal ions for the phosphodiester bond formation. We explore two understudied roles of metals in pol transactions with emphasis on polα, a crucial enzyme in the initiation of DNA synthesis. We present evidence that the combination of many factors, including the structure of the template/primer, the identity of the metal, the metal turnover in the pol active site, and the influence of the concentration of nucleoside triphosphates, affect DNA pol synthesis. On the poly-dT70 template, the increase of Mg(2+) concentration within the range typically used for pol reactions led to the severe loss of the ability of pol to extend DNA primers and led to a decline in DNA product sizes when extending RNA primers, simulating the effect of "counting" of the number of nucleotides in nascent primers by polα. We suggest that a high Mg(2+) concentration promotes the dynamic formation of unconventional DNA structure(s), thus limiting the apparent processivity of the enzyme. Next, we found that Zn(2+) supported robust polα reactions when the concentration of nucleotides was above the concentration of ions; however, there was only one nucleotide incorporation by the Klenow fragment of DNA pol I. Zn(2+) drastically inhibited polα, but had no effect on Klenow, when Mg(2+) was also present. It is possible that Zn(2+) perturbs metal-mediated transactions in pol active site, for example affecting the step of pyrophosphate removal at the end of each pol cycle necessary for continuation of polymerization.
DNA聚合酶(pols)是在细胞复杂环境中参与遗传物质复制、修复和重组的精密蛋白质机器。DNA聚合酶反应形成磷酸二酯键至少需要两个二价金属离子。我们着重研究了在聚合酶作用过程中金属的两个尚未得到充分研究的作用,重点是DNA合成起始阶段的关键酶——聚合酶α。我们提供的证据表明,包括模板/引物结构、金属种类、聚合酶活性位点的金属周转以及三磷酸核苷浓度的影响等多种因素的组合,会影响DNA聚合酶的合成。在聚-dT70模板上,在聚合酶反应通常使用的镁离子浓度范围内增加镁离子浓度,会导致聚合酶延伸DNA引物的能力严重丧失,并且在延伸RNA引物时会导致DNA产物大小下降,这模拟了聚合酶α对新生引物中核苷酸数量进行“计数”的效果。我们认为,高镁离子浓度会促进非常规DNA结构的动态形成,从而限制酶的表观持续合成能力。接下来,我们发现当核苷酸浓度高于离子浓度时,锌离子能支持聚合酶α的有效反应;然而,DNA聚合酶I的Klenow片段只掺入了一个核苷酸。当同时存在镁离子时,锌离子会强烈抑制聚合酶α,但对Klenow片段没有影响。锌离子有可能干扰了聚合酶活性位点中金属介导的反应,例如影响了聚合反应继续进行所需的每个聚合酶循环末端焦磷酸去除步骤。