Cordoba John J, Mullins Elwood A, Salay Lauren E, Eichman Brandt F, Chazin Walter J
Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA.
Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
bioRxiv. 2023 Aug 1:2023.08.01.551538. doi: 10.1101/2023.08.01.551538.
DNA replication in eukaryotes relies on the synthesis of a ~30-nucleotide RNA/DNA primer strand through the dual action of the heterotetrameric polymerase α-primase (pol-prim) enzyme. Synthesis of the 7-10-nucleotide RNA primer is regulated by the C-terminal domain of the primase regulatory subunit (PRIM2C) and is followed by intramolecular handoff of the primer to pol α for extension by ~20 nucleotides of DNA. Here we provide evidence that RNA primer synthesis is governed by a combination of the high affinity and flexible linkage of the PRIM2C domain and the low affinity of the primase catalytic domain (PRIM1) for substrate. Using a combination of small angle X-ray scattering and electron microscopy, we found significant variability in the organization of PRIM2C and PRIM1 in the absence and presence of substrate, and that the population of structures with both PRIM2C and PRIM1 in a configuration aligned for synthesis is low. Crosslinking was used to visualize the orientation of PRIM2C and PRIM1 when engaged by substrate as observed by electron microscopy. Microscale thermophoresis was used to measure substrate affinities for a series of pol-prim constructs, which showed that the PRIM1 catalytic domain does not bind the template or emergent RNA-primed templates with appreciable affinity. Together, these findings support a model of RNA primer synthesis in which generation of the nascent RNA strand and handoff of the RNA-primed template from primase to polymerase α is mediated by the high degree of inter-domain flexibility of pol-prim, the ready dissociation of PRIM1 from its substrate, and the much higher affinity of the POLA1cat domain of polymerase α for full-length RNA-primed templates.
真核生物中的DNA复制依赖于通过异源四聚体聚合酶α-引发酶(pol-prim)的双重作用合成一条约30个核苷酸的RNA/DNA引物链。7-10个核苷酸的RNA引物的合成由引发酶调节亚基(PRIM2C)的C末端结构域调控,随后引物通过分子内转移至pol α,以延伸约20个核苷酸的DNA。在这里,我们提供的证据表明,RNA引物的合成受PRIM2C结构域的高亲和力和灵活连接以及引发酶催化结构域(PRIM1)对底物的低亲和力共同控制。通过结合小角X射线散射和电子显微镜,我们发现在不存在和存在底物的情况下,PRIM2C和PRIM1的组织存在显著差异,并且PRIM2C和PRIM1处于有利于合成的排列构型的结构群体较少。交联用于可视化电子显微镜观察到的底物与PRIM2C和PRIM1结合时的方向。微尺度热泳用于测量一系列pol-prim构建体对底物的亲和力,结果表明PRIM1催化结构域对模板或新生RNA引发的模板没有明显的亲和力。这些发现共同支持了一个RNA引物合成模型,其中新生RNA链的生成以及RNA引发的模板从引发酶向聚合酶α的转移是由pol-prim的高度结构域间灵活性、PRIM1与其底物的容易解离以及聚合酶α的POLA1cat结构域对全长RNA引发模板的高得多的亲和力介导 的。