Suppr超能文献

比例风险混合效应模型下相关生存数据的三种解释变异量度

Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model.

作者信息

Honerkamp-Smith Gordon, Xu Ronghui

机构信息

Department of Mathematics, University of California, San Diego, San Diego, CA, U.S.A.

Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, U.S.A.

出版信息

Stat Med. 2016 Oct 15;35(23):4153-65. doi: 10.1002/sim.6993. Epub 2016 May 30.

Abstract

Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed-effects model. Because different approaches have been studied in the literature outside the classical linear regression model, we investigate three measures R(2) , Rres2, and ρ(2) that quantify three different population coefficients. We show that although the three population measures are not the same, they reflect similar amounts of variation explained by the predictors. Among the three measures, we show that R(2) , which is the simplest to compute, is also consistent for the first population measure under the usual asymptotic scenario when the number of clusters tends to infinity. The other two measures, on the other hand, all require that in addition the cluster sizes be large. We study the properties of the measures both analytically and through simulation studies. We illustrate their different usage on a multi-center clinical trial and a recurrent events data set. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

解释变异的度量在科学研究中很有用,因为它们量化了一个或多个其他变量所解释的感兴趣结果变量的变异量。我们在比例风险混合效应模型下,为相关生存数据开发了这样的度量。由于在经典线性回归模型之外的文献中已经研究了不同的方法,我们研究了三种度量(R(2))、(Rres2)和(\rho(2)),它们量化了三个不同的总体系数。我们表明,虽然这三个总体度量不相同,但它们反映了预测变量所解释的相似变异量。在这三个度量中,我们表明最简单计算的(R(2)),在聚类数量趋于无穷的通常渐近情况下,对于第一个总体度量也是一致的。另一方面,其他两个度量都要求聚类大小也很大。我们通过解析和模拟研究来研究这些度量的性质。我们在一个多中心临床试验和一个复发事件数据集上说明了它们的不同用法。版权所有© 2016约翰威立父子有限公司。

相似文献

1
2
Measures of explained variation under the mixture cure model for survival data.
Stat Med. 2023 Feb 10;42(3):228-245. doi: 10.1002/sim.9611. Epub 2022 Nov 22.
5
Explained variation in survival analysis.
Stat Med. 1996 Oct 15;15(19):1999-2012. doi: 10.1002/(SICI)1097-0258(19961015)15:19<1999::AID-SIM353>3.0.CO;2-D.
6
Accuracy of predictive ability measures for survival models.
Stat Med. 2017 Sep 10;36(20):3171-3180. doi: 10.1002/sim.7342. Epub 2017 Jun 7.
7
8
Explained randomness in proportional hazards models.
Stat Med. 2005 Feb 15;24(3):479-89. doi: 10.1002/sim.1946.
9
Variable selection via penalized generalized estimating equations for a marginal survival model.
Stat Methods Med Res. 2020 Sep;29(9):2493-2506. doi: 10.1177/0962280220901728. Epub 2020 Jan 29.

引用本文的文献

2
Concentration and genetic regulation of sex hormone binding globulin and fracture risk in older women.
Climacteric. 2025 Apr;28(2):184-190. doi: 10.1080/13697137.2024.2431036. Epub 2024 Dec 5.
3
Prognostic Utility of Tumor Stage versus American Thyroid Association Risk Class in Thyroid Cancer.
Laryngoscope. 2023 Jan;133(1):205-211. doi: 10.1002/lary.30252. Epub 2022 Jun 18.

本文引用的文献

2
A note on bias of measures of explained variation for survival data.
Stat Med. 2016 Mar 15;35(6):877-82. doi: 10.1002/sim.6749. Epub 2015 Oct 1.
3
Prevalence and predictors of maternal alcohol consumption in 2 regions of Ukraine.
Alcohol Clin Exp Res. 2014 Apr;38(4):1012-9. doi: 10.1111/acer.12318.
4
Bayesian Variable Selection under the Proportional Hazards Mixed-effects Model.
Comput Stat Data Anal. 2014 Jul;75:53-65. doi: 10.1016/j.csda.2014.02.009.
5
Conditional Akaike information under generalized linear and proportional hazards mixed models.
Biometrika. 2011 Sep;98(3):685-700. doi: 10.1093/biomet/asr023. Epub 2011 Jul 13.
7
A measure of explained risk in the proportional hazards model.
Biostatistics. 2012 Apr;13(2):315-25. doi: 10.1093/biostatistics/kxr047. Epub 2011 Dec 21.
8
A simulation study of predictive ability measures in a survival model I: explained variation measures.
Stat Med. 2012 Oct 15;31(23):2627-43. doi: 10.1002/sim.4242. Epub 2011 Apr 26.
9
An information-theoretic approach to surrogate-marker evaluation with failure time endpoints.
Lifetime Data Anal. 2011 Apr;17(2):195-214. doi: 10.1007/s10985-010-9185-6. Epub 2010 Sep 28.
10
On the prognostic value of survival models with application to gene expression signatures.
Stat Med. 2010 Mar 30;29(7-8):818-29. doi: 10.1002/sim.3768.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验