Suppr超能文献

相似文献

1
Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans.
J Physiol. 2016 Sep 15;594(18):5303-15. doi: 10.1113/JP272283. Epub 2016 Jul 8.
2
Pharmacological attenuation of group III/IV muscle afferents improves endurance performance when oxygen delivery to locomotor muscles is preserved.
J Appl Physiol (1985). 2019 Nov 1;127(5):1257-1266. doi: 10.1152/japplphysiol.00490.2019. Epub 2019 Sep 12.
3
Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans.
J Physiol. 2011 Nov 1;589(Pt 21):5299-309. doi: 10.1113/jphysiol.2011.213769. Epub 2011 Aug 30.
4
Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation.
Am J Physiol Regul Integr Comp Physiol. 2021 Nov 1;321(5):R687-R698. doi: 10.1152/ajpregu.00158.2021. Epub 2021 Sep 22.
6
Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective.
J Physiol. 2018 Jun;596(12):2301-2314. doi: 10.1113/JP275817. Epub 2018 May 8.
7
Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents.
Med Sci Sports Exerc. 2017 Dec;49(12):2404-2413. doi: 10.1249/MSS.0000000000001391.
8
Fatigue-related group III/IV muscle afferent feedback facilitates intracortical inhibition during locomotor exercise.
J Physiol. 2018 Oct;596(19):4789-4801. doi: 10.1113/JP276460. Epub 2018 Sep 3.

引用本文的文献

3
Neuromuscular fatigue in men and women during severe-intensity exercise.
Braz J Med Biol Res. 2025 May 9;58:e14448. doi: 10.1590/1414-431X2025e14448. eCollection 2025.
4
Lactic acidosis: implications for human exercise performance.
Eur J Appl Physiol. 2025 Mar 15. doi: 10.1007/s00421-025-05750-0.
5
Perceived exertion reflects fatigue conditions during power-aimed resistance training.
Int J Sports Med. 2025 Jun;46(6):437-445. doi: 10.1055/a-2545-5403. Epub 2025 Feb 24.
8
Muscle microvascular oxygen delivery limitations during the contraction phase of intermittent maximal effort contractions.
Eur J Appl Physiol. 2025 Feb;125(2):353-364. doi: 10.1007/s00421-024-05605-0. Epub 2024 Sep 10.

本文引用的文献

1
Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
J Neurosci. 2016 Jan 20;36(3):926-37. doi: 10.1523/JNEUROSCI.1825-15.2016.
2
Peripheral and Central Fatigue Development during All-Out Repeated Cycling Sprints.
Med Sci Sports Exerc. 2016 Mar;48(3):391-401. doi: 10.1249/MSS.0000000000000800.
3
Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers.
Am J Physiol Cell Physiol. 2014 Nov 15;307(10):C939-50. doi: 10.1152/ajpcell.00206.2014. Epub 2014 Sep 3.
5
The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise.
Am J Physiol Regul Integr Comp Physiol. 2014 Jun 15;306(12):R934-40. doi: 10.1152/ajpregu.00043.2014. Epub 2014 Apr 16.
6
Exercise performance is regulated during repeated sprints to limit the development of peripheral fatigue beyond a critical threshold.
Exp Physiol. 2014 Jul;99(7):951-63. doi: 10.1113/expphysiol.2014.077974. Epub 2014 Apr 11.
7
Remote control of respiratory neural network by spinal locomotor generators.
PLoS One. 2014 Feb 20;9(2):e89670. doi: 10.1371/journal.pone.0089670. eCollection 2014.
8
Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: relationship to the critical power concept.
Am J Physiol Regul Integr Comp Physiol. 2013 Nov 1;305(9):R1085-92. doi: 10.1152/ajpregu.00406.2013. Epub 2013 Sep 25.
9
Control of breathing during exercise.
Compr Physiol. 2012 Jan;2(1):743-77. doi: 10.1002/cphy.c100045.
10
Influences of spinal anesthesia on exercise tolerance in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med. 2012 Oct 1;186(7):606-15. doi: 10.1164/rccm.201203-0404OC. Epub 2012 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验