Suppr超能文献

运动过程中的生物能量学与ATP合成:Ⅲ/Ⅳ类肌肉传入神经的作用

Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents.

作者信息

Broxterman Ryan M, Layec Gwenael, Hureau Thomas J, Morgan David E, Bledsoe Amber D, Jessop Jacob E, Amann Markus, Richardson Russell S

机构信息

1Geriatric Research, Education, and Clinical Center, Salt Lake City Veteran's Affairs Medical Center, Salt Lake City, UT; 2Department of Internal Medicine, University of Utah, Salt Lake City, UT; 3Department of Anesthesiology, University of Utah, Salt Lake City, UT; and 4Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.

出版信息

Med Sci Sports Exerc. 2017 Dec;49(12):2404-2413. doi: 10.1249/MSS.0000000000001391.

Abstract

PURPOSE

The purpose of this study was to investigate the role of the group III/IV muscle afferents in the bioenergetics of exercising skeletal muscle beyond constraining the magnitude of metabolic perturbation.

METHODS

Eight healthy men performed intermittent isometric knee-extensor exercise to task failure at ~58% maximal voluntary contraction under control conditions (CTRL) and with lumbar intrathecal fentanyl to attenuate group III/IV leg muscle afferents (FENT). Intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4), adenosine triphosphate (ATP), and pH were determined using phosphorous magnetic resonance spectroscopy (P-MRS).

RESULTS

The magnitude of metabolic perturbation was significantly greater in FENT compared with CTRL for [Pi] (37.8 ± 16.8 vs 28.6 ± 8.6 mM), [H2PO4] (24.3 ± 12.2 vs 17.9 ± 7.1 mM), and [ATP] (75.8% ± 17.5% vs 81.9% ± 15.8% of baseline), whereas there was no significant difference in [PCr] (4.5 ± 2.4 vs 4.4 ± 2.3 mM) or pH (6.51 ± 0.10 vs 6.54 ± 0.14). The rate of perturbation in [PCr], [Pi], [H2PO4], and pH was significantly faster in FENT compared with CTRL. Oxidative ATP synthesis was not significantly different between conditions. However, anaerobic ATP synthesis, through augmented creatine kinase and glycolysis reactions, was significantly greater in FENT than in CTRL, resulting in a significantly greater ATP cost of contraction (0.049 ± 0.016 vs 0.038 ± 0.010 mM·min·N).

CONCLUSION

Group III/IV muscle afferents not only constrain the magnitude of perturbation in intramuscular Pi, H2PO4, and ATP during small muscle mass exercise but also seem to play a role in maintaining efficient skeletal muscle contractile function in men.

摘要

目的

本研究旨在探究Ⅲ/Ⅳ类肌传入神经在骨骼肌运动生物能量学中的作用,不仅仅局限于限制代谢紊乱的程度。

方法

8名健康男性在对照条件下(CTRL)以及使用腰椎鞘内注射芬太尼以减弱Ⅲ/Ⅳ类腿部肌肉传入神经(FENT)的情况下,进行间歇性等长伸膝运动直至任务失败,运动强度约为最大自主收缩的58%。使用磷磁共振波谱法(P-MRS)测定肌内磷酸肌酸(PCr)、无机磷酸盐(Pi)、二质子化磷酸盐(H2PO4)、三磷酸腺苷(ATP)的浓度以及pH值。

结果

与CTRL相比,FENT组中[Pi](37.8±16.8对28.6±8.6 mM)、[H2PO4](24.3±12.2对17.9±7.1 mM)和[ATP](占基线的75.8%±17.5%对81.9%±15.8%)的代谢紊乱程度显著更大,而[PCr](4.5±2.4对4.4±2.3 mM)或pH(6.51±0.10对6.54±0.14)无显著差异。与CTRL相比,FENT组中[PCr]、[Pi]、[H2PO4]和pH的紊乱速率明显更快。不同条件下氧化ATP合成无显著差异。然而,通过增强肌酸激酶和糖酵解反应,FENT组的无氧ATP合成显著高于CTRL组,导致收缩的ATP成本显著更高(0.049±0.016对0.038±0.010 mM·min·N)。

结论

Ⅲ/Ⅳ类肌传入神经不仅在小肌肉量运动期间限制肌内Pi、H2PO4和ATP的紊乱程度,而且似乎在维持男性骨骼肌有效收缩功能中发挥作用。

相似文献

1
Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents.
Med Sci Sports Exerc. 2017 Dec;49(12):2404-2413. doi: 10.1249/MSS.0000000000001391.
2
Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective.
J Physiol. 2018 Jun;596(12):2301-2314. doi: 10.1113/JP275817. Epub 2018 May 8.
3
Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
J Appl Physiol (1985). 2017 May 1;122(5):1208-1217. doi: 10.1152/japplphysiol.01093.2016. Epub 2017 Feb 16.
4
Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans.
J Physiol. 2016 Sep 15;594(18):5303-15. doi: 10.1113/JP272283. Epub 2016 Jul 8.
6
Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation.
Am J Physiol Regul Integr Comp Physiol. 2021 Nov 1;321(5):R687-R698. doi: 10.1152/ajpregu.00158.2021. Epub 2021 Sep 22.
7
Impaired mitochondrial function and reduced energy cost as a result of muscle damage.
Med Sci Sports Exerc. 2015 Jun;47(6):1135-44. doi: 10.1249/MSS.0000000000000523.
8
Age-related changes in ATP-producing pathways in human skeletal muscle in vivo.
J Appl Physiol (1985). 2005 Nov;99(5):1736-44. doi: 10.1152/japplphysiol.00566.2005. Epub 2005 Jul 7.
10

引用本文的文献

1
Lactic acidosis: implications for human exercise performance.
Eur J Appl Physiol. 2025 Mar 15. doi: 10.1007/s00421-025-05750-0.
2
Perceived exertion reflects fatigue conditions during power-aimed resistance training.
Int J Sports Med. 2025 Jun;46(6):437-445. doi: 10.1055/a-2545-5403. Epub 2025 Feb 24.
3
Neuromuscular Fatigability Associated with Different Pacing Strategies During an Ultra-Endurance Pull-Up Task: A Case Study.
Int J Exerc Sci. 2022 Nov 1;15(3):1514-1527. doi: 10.70252/DYOL6987. eCollection 2022.
5
Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation.
Am J Physiol Regul Integr Comp Physiol. 2021 Nov 1;321(5):R687-R698. doi: 10.1152/ajpregu.00158.2021. Epub 2021 Sep 22.
6
Bioenergetic Mechanisms Linking V˙O2 Kinetics and Exercise Tolerance.
Exerc Sport Sci Rev. 2021 Oct 1;49(4):274-283. doi: 10.1249/JES.0000000000000267.
7
Should We Trust Perceived Effort for Loading Control and Resistance Exercise Prescription After ACL Reconstruction?
Sports Health. 2022 Sep-Oct;14(5):764-769. doi: 10.1177/19417381211041289. Epub 2021 Sep 4.
8
Effects of Physical Exercise on Neuroplasticity and Brain Function: A Systematic Review in Human and Animal Studies.
Neural Plast. 2020 Dec 14;2020:8856621. doi: 10.1155/2020/8856621. eCollection 2020.
9
On the Influence of Group III/IV Muscle Afferent Feedback on Endurance Exercise Performance.
Exerc Sport Sci Rev. 2020 Oct;48(4):209-216. doi: 10.1249/JES.0000000000000233.
10
Contralateral fatigue during severe-intensity single-leg exercise: influence of acute acetaminophen ingestion.
Am J Physiol Regul Integr Comp Physiol. 2019 Aug 1;317(2):R346-R354. doi: 10.1152/ajpregu.00084.2019. Epub 2019 May 29.

本文引用的文献

1
Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
J Appl Physiol (1985). 2017 May 1;122(5):1208-1217. doi: 10.1152/japplphysiol.01093.2016. Epub 2017 Feb 16.
2
Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans.
J Physiol. 2016 Sep 15;594(18):5303-15. doi: 10.1113/JP272283. Epub 2016 Jul 8.
4
Aging alters muscle reflex control of autonomic cardiovascular responses to rhythmic contractions in humans.
Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1479-89. doi: 10.1152/ajpheart.00433.2015. Epub 2015 Sep 18.
6
The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise.
Am J Physiol Regul Integr Comp Physiol. 2014 Jun 15;306(12):R934-40. doi: 10.1152/ajpregu.00043.2014. Epub 2014 Apr 16.
7
Mitochondrial function and increased convective O2 transport: implications for the assessment of mitochondrial respiration in vivo.
J Appl Physiol (1985). 2013 Sep;115(6):803-11. doi: 10.1152/japplphysiol.00257.2013. Epub 2013 Jun 27.
8
Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output.
J Appl Physiol (1985). 2013 Aug 1;115(3):355-64. doi: 10.1152/japplphysiol.00049.2013. Epub 2013 May 30.
9
Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the "critical power".
J Appl Physiol (1985). 2013 Jul 15;115(2):243-50. doi: 10.1152/japplphysiol.00334.2013. Epub 2013 May 2.
10
Muscle mass and peripheral fatigue: a potential role for afferent feedback?
Acta Physiol (Oxf). 2012 Dec;206(4):242-50. doi: 10.1111/j.1748-1716.2012.02471.x. Epub 2012 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验